Skip to main content

Improving Rice Tolerance to Low- and High-Temperature Stress Through Biotechnological Approaches

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Abiotic stresses are severe problem to the crop survival which someway influences plant growth and yield. Among abiotic stress, low- and high-temperature stress is important, which impacts adverse effect on rice (Oryza Sativa L.). Rice is one of the chief and staple cereal crops of world population. Rice in response to low- and high-temperature stress changes its gene expression pattern and protein products. Several studies concerning genome profiling mutational and transgenic plant reveal complex transcriptional mechanism that activates in response to low- and high-temperature stress. By using different strategies, biotechnology improves crop yield and quality by enhancing their capacity to defend against different stresses. This chapter focuses on the conventional and improved biotechnological approaches for the betterment of low- and high-temperature stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  CAS  Google Scholar 

  • Alia HH, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  CAS  Google Scholar 

  • Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113:467–475

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5#-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Small heat shock proteins: structural assembly and functional responses against heat stress in plants. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant metabolites and regulation under environmental stress. Elsevier/Academic Press, London, pp 367–376

    Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A (2014) Inducibility of dehydration responsive element (DRE)-based promoter through gusA expression in transgenic tobacco. Indian J Biotechnol 13:172–177

    CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  CAS  Google Scholar 

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  CAS  Google Scholar 

  • Cattivelli L, Bartels D (1992) Biochemistry and molecular biology of cold-inducible enzymes and proteins in higher plants. Soc Exp Biol Semin Ser 49:267–288

    CAS  Google Scholar 

  • Chandran AKN, Jung KH (2014) Resources for systems biology in rice. J Plant Biol 57:80–92

    Article  CAS  Google Scholar 

  • Chang HC, Tang YC, Hayer-Hartl M, Hartl FU (2007) SnapShot: molecular chaperones, Part I. Cell 128(1):212. https://doi.org/10.1016/j.cell.2007.01.001

    Article  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  Google Scholar 

  • Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70–1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358

    Article  CAS  Google Scholar 

  • Chou WL, Huang LF, Fang JC, Yeh CH, Hong CY, Wu SJ et al (2014) Divergence of the expression and subcellular localization of CCR4-associated factor 1 CAF1 deadenylase proteins in Oryza sativa. Plant Mol Biol 85:443–458

    Article  CAS  Google Scholar 

  • Crosatti C, Nevo E, Stanca AM, Cattivelli L (1996) Genetic analysis of the accumulation of COR14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley. Theor Appl Genet 93:975–981

    Article  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  Google Scholar 

  • El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7:e52030

    Article  CAS  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M et al (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H et al (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    Article  CAS  Google Scholar 

  • Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T et al (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023

    Article  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activator as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    Article  CAS  Google Scholar 

  • Gonzalez-Schain N, Dreni L, Lawas LM, Galbiati M, Colombo L, Heuer S et al (2016) Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant Cell Physiol 57:57–68

    Article  CAS  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206:38–47

    Article  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132:757–767

    Article  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  CAS  Google Scholar 

  • Houde M, Dhindsa RS, Sarhan F (1992) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234:43–48

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng TY, Wang TC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  Google Scholar 

  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tag HJ, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger proteins ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  CAS  Google Scholar 

  • Hughes HA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  • Hur J, Jung KH, Lee CH, An G (2004) Stress inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Hwang EW, Kim KA, Park SC et al (2005) Expression profiles of hot pepper (Capsicum annuum ) genes under cold stress conditions. J Biosci 30:657–667

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  Google Scholar 

  • Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K et al (2009) Carbon and nitrogen transporter during grain filling in rice under high-temperature conditions. J Agron Crop Sci 195:368–376

    Article  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  Google Scholar 

  • Jung YJ, Nou SI, Kang KK (2014) Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed Biotech 2:370–379

    Article  Google Scholar 

  • Kaneda CBH (1974) Response of indica-japonica rice hybrids to low temperatures. SABRAO J 6:17–32

    Google Scholar 

  • Kaneko K, Sasak M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T et al (2016) Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice 9:26

    Article  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) A heat tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  Google Scholar 

  • Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y (2005) Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant J 42:164–174

    Article  CAS  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G et al (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  CAS  Google Scholar 

  • Kulz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124

    Article  CAS  Google Scholar 

  • Kumar A, Sengar RS, Singh A, Dixit R, Singh R (2018) Biotechnological tools for enhancing abiotic stress tolerance in plant. In: Eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Singapore, pp 147–172

    Chapter  Google Scholar 

  • Larcher W, Heber U, Santarius KA (1973) Limiting temperatures for life functions. In: Precht H, Christopherson J, Hensel H, Larcher W (eds) Temperature and life. Academic Press, New York, pp 195–291

    Chapter  Google Scholar 

  • Laura M et al (2010) Metabolic response to cold and freezing of Oseospermum ecklonis overexpressing OsmyB4. Plant Physiol Biochem 48(9):764–771

    Article  CAS  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  Google Scholar 

  • Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ, Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283–290

    Article  CAS  Google Scholar 

  • Li CY, Peng CH, Zhao QB, Xie P, Chen W (2004) Characteristic analysis of the abnormal high temperature in 2003 midsummer in Wuhan City. J Cent Chin Norm Univ 38:379–381

    Google Scholar 

  • Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29(9):977–986

    Article  CAS  Google Scholar 

  • Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R et al (2015a) Metabolic and transcriptomic signatures of ricefloral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192

    Article  CAS  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG et al (2015b) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Article  CAS  Google Scholar 

  • Liming Y, Qian Y, Pigang L, Sen L (2008) Expression of the HSP24 gene from Trichoderma harzianum in Saccharomyces cerevisiae. J Therm Biol 33:1–6

    Article  CAS  Google Scholar 

  • Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5:2140–2156

    Article  CAS  Google Scholar 

  • Lin Z, Zhang X, Yang X, Li G, Tang S, Wang S et al (2014) Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly. BMC Plant Biol 14:163

    Article  Google Scholar 

  • Liu J, Shono M (1999) Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant Cell Physiol 40:1297–1304

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  Google Scholar 

  • Liu X, Guo T, Wan X, Wang H, Zhu M, Li A et al (2010) Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics 11:730

    Article  CAS  Google Scholar 

  • Liu X, Wan X, Ma X, Wan J (2011) Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54:64–80

    Article  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X et al (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  CAS  Google Scholar 

  • Mackill DJLX (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346

    Article  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  Google Scholar 

  • Mantra NL, Ford R, Coram TE et al (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high salinity, cold and drought. BMC Genomics 8:303

    Article  CAS  Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    Article  CAS  Google Scholar 

  • Miroshnichenko S, Tripp J, Nieden UZ, Neumann D, Conrad U, Manteuffel R (2005) Immuno modulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sub-lethal temperatures. Plant J 41:269–281

    Article  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  CAS  Google Scholar 

  • Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol 89:375–380

    Article  CAS  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314

    Article  CAS  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    Article  CAS  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M et al (2004) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    Article  CAS  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylase-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  CAS  Google Scholar 

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need. Cell Stress Chaper 6:177–189

    Article  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101:3985–3990

    Article  CAS  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  CAS  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  CAS  Google Scholar 

  • Pareek A, Sopory SK, Bohnert H, Govindjee J (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht. ISBN: 978-90-481-31112

    Book  Google Scholar 

  • Park SM, Hong CB (2002) Class I small heat shock protein gives thermotolerance in tobacco. J Plant Physiol 159:25–30

    Article  CAS  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  Google Scholar 

  • Prasanth VV, Chakravarthi DVN, Vishnu KT, Venkateswara RY, Panigrahy M, Mangrauthia SK, Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  CAS  Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2005) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  CAS  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239

    Article  CAS  Google Scholar 

  • Qin X, Liu Y, Mao S, Li T, Wu H, Chu C, Wang Y (2011) Genetic transformation of lipid transfer protein encoding gene in phalaenopsis amabilis to enhance cold resistance. Euphytica 177(1):33–43

    Article  CAS  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Hsp101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  Google Scholar 

  • Rana RM, Dong S, Tang H, Ahmad F, Zhang H (2012) Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). J Exp Bot 63:6003–6016

    Article  CAS  Google Scholar 

  • Rédei GP (1969) Arabidopsis thaliana (L.) Heynh. A review of the genetics and biology. Bibliogr Genet 21:1–151

    Google Scholar 

  • Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  Google Scholar 

  • Rensink WA, Lobst S, Hart A et al (2005) Gene expression profiling of potato responses to cold, heat and salt stress. Funct Integr Genomics 5:201–207

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  Google Scholar 

  • Rizhsky R, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  Google Scholar 

  • Sakamoto A, Alia Murata N, Murata A (1998) Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  Google Scholar 

  • Sanchez-Reinoso AD, Garces-Varon G, Restrepo-Diaz H (2014) Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chil J Agric Res 74(4):373–379

    Article  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  Google Scholar 

  • Shah F, Huang J, Kul K, Nie L, Shah T, Chen C (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556. https://doi.org/10.1017/S0021859611000360

    Article  CAS  Google Scholar 

  • Sharkey TD, Badger MR, Von-Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosyn Res 67:147–156

    Article  CAS  Google Scholar 

  • Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q et al (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33:996–1003

    Article  CAS  Google Scholar 

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    Article  CAS  Google Scholar 

  • Shiraya T, Mori T, Maruyama T, Sasaki M, Takamatsu T, Oikawa K et al (2015) Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnol J 13:1251–1263

    Article  CAS  Google Scholar 

  • Sohn SO, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant 51:340–342

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Montagu MV, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  Google Scholar 

  • Tenorio FA, Ye C, Redona E, Sierra S, Laza M, Argayoso MA (2013) Screening rice genetic resources for heat tolerance. SABRAO J Breed Genet 45:371–381

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tian X, Luo H, Zhou H, Wu C (2009) Research on heat stress of rice in China: progress and prospect. Chin Agric Sci Bull 25:166–168

    Google Scholar 

  • Toenniessen GH (1991) Potentially useful genes for rice genetic engineering. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. International Rice Research Institute/CAB International, Wallingford/Manila, pp 253–280

    Google Scholar 

  • Tonini A, Cabrera E (2011) Globalizing rice research for a changing world (Technical Bulletin No. 15). International Rice Research Institute, Los Banos

    Google Scholar 

  • Torok Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone mediated refolding. Proc Natl Acad Sci U S A 98:3098–3103

    Article  CAS  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N et al (2007) Silencing of poly (ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci U S A 104:15150–15155

    Article  CAS  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) A recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  Google Scholar 

  • Wang CY (1990) Chilling injury of horticultural crops. CRC Press, Boca Raton

    Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008a) Overexpression of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q et al (2008b) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  Google Scholar 

  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S (2009a) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:93–105

    Google Scholar 

  • Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R (2009b) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. In: Sparks DL (ed) Advances in agronomy, vol 101. Academic, Burlington, pp 59–122

    Google Scholar 

  • Woo MO, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH et al (2008) Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54:190–204

    Article  CAS  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  Google Scholar 

  • Xia MY, Qi HX (2004) Effects of high temperature on the seed setting percent of hybrid rice bred with four male sterile lines. Hubei Agric Sci 2:21–22

    Google Scholar 

  • Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK (2002) Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci U S A 99:10899–10904

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809

    Article  CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  CAS  Google Scholar 

  • Yamamoto E, Yonemaru JI, Yamamoto T, Yano M (2012) OGRO: the overview of functionally characterized genes in rice online database. Rice 5:1–10

    Article  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 99:7530–7535

    Article  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycine betaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crops science. International Rice Research Institute, Los Banos

    Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  CAS  Google Scholar 

  • Zhang X (2010) Overexpression of SicZfp1, a novel TFIIIA type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Rep 1–12

    Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high salt tolerance in transgenic Arabidopsis. BMB Rep 42(8):486–492

    Article  CAS  Google Scholar 

  • Zhang XW, Li JP, Liu AL, Zou J, Zhou XY, Xiang JH et al (2012) Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 7:e49652

    Article  CAS  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7(6):550–561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bano, C., Amist, N., Singh, N.B. (2020). Improving Rice Tolerance to Low- and High-Temperature Stress Through Biotechnological Approaches. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_22

Download citation

Publish with us

Policies and ethics