Skip to main content

Experimental models

  • Chapter
Clinical Nephrotoxins

Abstract

In order to test hypothesis and dissect out the mechanisms by which nephrotoxins induce renal injury, it is critical that convenient, reproducible animal models be available. However, given the complexity of the kidney, and because the functional effect of a nephrotoxin can include: vascular, intraluminal, and direct tubular cell effects, no single experimental model is ideally suited to yield all necessary insights. Because of this, a variety of experimental models for the study of nephrotoxicity have been undertaken, including whole animal, isolated perfused kidney, isolated microvessel, isolated proximal tubule, and cultured cells. Each, when appropriately applied and interpreted, produces useful information. However, each technique also has major limitations which must be appreciated when interpreting the results. In this chapter, five commonly used experimental approaches will be briefly reviewed, stressing their utility and shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zager RA, Gmur DJ, Bredl CR, Eng MJ, Fisher L. Regional responses within the kidney to ischemia: assessment of adenine nucleotide and catabolite profiles. Biochim Biophys Acta 1990; 1035: 29–36.

    Article  PubMed  CAS  Google Scholar 

  2. Zager RA. Gentamicin nephrotoxicity in the setting of acute renal hypoperfusion. Am J Physiol 1988; 254: F574–81.

    Google Scholar 

  3. Zager RA. A focus of tissue necrosis increases renal susceptibility to gentamicin administration. Kidney Int 1988; 33: 84–90.

    Article  PubMed  CAS  Google Scholar 

  4. Zager RA, Prior RB. Gentamicin and gram negative bacteremia: a synergism for the development of experimental nephrotoxic acute renal failure. J Clin Invest 1986; 78: 196–204.

    Article  PubMed  CAS  Google Scholar 

  5. Zager RA. Gentamicin effects on renal ischemia-re-perfusion injury. Circ Res 1992; 70: 20–8.

    Article  PubMed  CAS  Google Scholar 

  6. Zager RA, Foerder C, Bredl C. The influence of mannitol on myoglobinuric acute renal failure: functional, biochemical, and morphological assessments. J Am Soc Nephrol 1991; 2: 848–55.

    PubMed  CAS  Google Scholar 

  7. Shah SV, Walker PD. Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol 1988; 255: F438–43.

    Google Scholar 

  8. Palier MS. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 1988; 255: F539–44.

    Google Scholar 

  9. Abul-Ezz SR, Walker PD, Shah SV. Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci USA 1991; 88: 9833–7.

    Article  PubMed  CAS  Google Scholar 

  10. von Möllendorf W. Der Exkretionsapparat. In: von Möllendorf W, editor. Handbuch der mikroskopischen Anatomie des Menschen, Vol VII/1. Berlin, Heidelberg, New York: Springer, 1930.

    Google Scholar 

  11. Braus H. In: Anatomie des Menschen. Berlin, Heidelberg, New York: Springer, 1929.

    Google Scholar 

  12. Kriz W, Bankir L. A standard nomenclature for structures of the kidney. Kidney Int 1988; 33: 1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Silbernagl S. Amino acids and oligopeptides. In: Seldin DW, Giebisch G, editors. The Kidney: Physiology and Pathophysiology (Second Edition), New York: Raven Press; 1992: 2889–920.

    Google Scholar 

  14. Ullrich KJ, Frömter E, Murer H. Principles of epithelial transport in kidney and intestine. Klin Wochenschr 1979; 57: 977–89.

    Article  PubMed  CAS  Google Scholar 

  15. Ullrich KJ. Epithelial transport: An introduction. Method Enzymol 1990; 191: 1–4.

    Article  CAS  Google Scholar 

  16. Guder WG, Morel F. Biochemical characterization of individual nephron segments. In: Windhager EE, editor. Handbook of physiology — Section 8: Renal physiology Vol II. Oxford University Press, 1992: 2119–64.

    Google Scholar 

  17. Jamieson RL. Long and short nephrons. Kidney Int 1987; 31: 597–605.

    Article  Google Scholar 

  18. Ulfendahl HR. Intrarenal oxygen tension. Acta Soc Med Ups 1962; 67:95–106.

    PubMed  CAS  Google Scholar 

  19. Pfaller W. Structure function correlation on rat kidney. Quantitative correlation of structure and function on the normal and injured rat kidney. Adv Anat Embryol Cell Biol 1982; 70: 1–106.

    Article  PubMed  CAS  Google Scholar 

  20. Soltoff SB. ATP and the regulation of renal cell function. Ann Rev Physiol 1986; 48: 9–31.

    Article  CAS  Google Scholar 

  21. Pfaller W, Rittinger M. Quantitative morphology of the rat kidney. Int J Biochem 1980; 12: 17–22.

    Article  PubMed  CAS  Google Scholar 

  22. Ross BD, Espinal J, Silva P. Glucose metabolism in renal tubular dysfunction. Kidney Int 1986; 29: 54–67.

    Article  PubMed  CAS  Google Scholar 

  23. Wirthenson G, Guder WG. Renal substrate metabolism. Physiol Rev 1986; 66: 469–97.

    Google Scholar 

  24. Guder WG, Wagner S, Wirthenson G. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 1986; 29: 41–5.

    Article  PubMed  CAS  Google Scholar 

  25. Wittner M, Weidtke C, Schlatter E, DiStefano A, Greger R. Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron. Pflügers Arch 1984; 402: 52–62.

    Article  PubMed  CAS  Google Scholar 

  26. Klein KL, Wang MS, Torikai S, Davidson WD, Kurokawa K. Substrate oxidation by isolated single nephron segments of the rat. Kidney Int 1981; 20: 29–35.

    Article  PubMed  CAS  Google Scholar 

  27. Montine TJ, Borch RF. Role of endogenous thiols in an in vitro model of cis-diaminedichloroplatinum (II) induced nephrotoxicity. Biochem Pharmacol 1990; 39: 1751–7.

    Article  PubMed  CAS  Google Scholar 

  28. Dienemann H, Hesse U, Brechteisbauer H, Mason J, Thurau K. Ischemic renal failure in conscious dogs: enhanced recovery with ATP-MgCl2 and adenosine. Eur Surg Res 1984; 16: 39.

    Article  Google Scholar 

  29. Siegel NJ, Gazier WB, Chaudry IH, Gaudio KM, Lytton B, Baue AE, Kashgarian M. Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int 1980; 17: 338–49.

    Article  PubMed  CAS  Google Scholar 

  30. Siegel NJ, Gaudio KM. Amino acids and adenine nucleotides in acute renal failure. In: Brenner BM, Lazarus JM, editors. Acute renal failure. New York, London, Melbourne: Churchill Livingstone, 1988: 857–73.

    Google Scholar 

  31. Weibel ER. Stereological Methods. Vol 1, 1979, Academic Press.

    Google Scholar 

  32. Welling LW, Welling DJ. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int 1975; 8: 343–9.

    Article  PubMed  CAS  Google Scholar 

  33. Wade JB, O’Neill RG, Pryor JL, Boulpaep EL. Modulation of cell membrane area in renal cortical tubules by corticosteroid hormones. J Cell Biol 1979; 81: 415–21.

    Article  Google Scholar 

  34. Kaissling B, LeHir M. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. Cell Tissue Res 1992; 224: 469–92.

    Google Scholar 

  35. Pfaller W, Fischer WM, Strieder N, Wurnig H, Deetjen P. Morphologic changes of cortical nephron cells in potassium adapted rats. Lab Invest 1974; 31: 678–84.

    PubMed  CAS  Google Scholar 

  36. Maesaka JK, McCaffery M. Evidence for renal tubular leakage in maleic acid induced Fanconi syndrome. Am J Physiol 1980; 239: F507–13.

    Google Scholar 

  37. Christensen EI, Maunsbach AB. Proteinuria induced by sodium maleate in rats. Effects on ultrastructure and protein handling in renal proximal tubule. Kidney Int 1980; 17: 771–87.

    Article  PubMed  CAS  Google Scholar 

  38. Verani RR, Brewer ED, Ince A, Bibson J, Bulger RE. Proximal tubular necrosis associated with maleic acid administration to the rat. Lab Invest 1982; 46: 79–88.

    PubMed  CAS  Google Scholar 

  39. Pfaller W, Joannidis M, Gstraunthaler G, Kotanko P. Quantitative morphologic changes of nephron structures and urinary enzyme activity pattern in sodium-maleate-induced renal injury. Renal Physiol Biochem 1989; 12: 56–64.

    PubMed  CAS  Google Scholar 

  40. Pfaller W, Gstraunthaler G, Kotanko P. Nephrotoxizität. Morphologie-Funktionsbeziehung. In: Guder WG, Lang H, editors. Pathobiochemie und Funktionsdiagnostik der Niere. Merck Symposium; Springer Verlag, 1991: 91–103.

    Chapter  Google Scholar 

  41. Kotanko P, Gstraunthaler G, Pfaller W. Harnenzyme zur nichtinvasiven Diagnostik von Nierenepithelschöden im akuten Nierenversagen. Wien Klin Wochenschr 1984; 96: 6259.

    Google Scholar 

  42. Kotanko P, Keiler R, Knabl L, Auzlitzky W, Margreiter R, Gstraunthaler G, Pfaller W Urinary enzyme analysis in renal allograft transplantation. Clin Chim Acta 1986; 160, 137–44.

    Article  PubMed  CAS  Google Scholar 

  43. Scherberich JE. Immunological and ultrastructural analysis of loss of tubular membrane-bound enzymes in patients with renal damage. Clin Chim Acta 1989; 185: 271–82.

    Article  PubMed  CAS  Google Scholar 

  44. Girolami JP, Bascands JL, Pecher C, Cabos G, Moatti JP, Mercier JF, Haguenoer JM, Manuel Y. Renal kallikrein excretion as a distal nephrotoxicity marker during cadmium exposure in rats. Toxicology 1989; 55: 117–29.

    Article  PubMed  CAS  Google Scholar 

  45. Horton JK, Davies M, Woodhead JS, Weeks J. A new and rapid immunochemiluminometric assay for the measurement of Tamm-Horsefall glycoprotein. Clin Chim Acta 1988; 174: 225–38.

    Article  PubMed  CAS  Google Scholar 

  46. Verpooten GF, Nuyts GD, Hoylaerts MF, Nouwen EJ, Vassaniyova Z, Dlhopolcek P, De Broe ME. Immunoassay in urine of a specific marker for proximal tubular S3-segment. Clin Chem 1992; 38: 642–7.

    PubMed  CAS  Google Scholar 

  47. Gstraunthaler G, Pfaller W, Kotanko P. Glutathione depletion and lipid peroxidation in mercury and maleate induced acute renal failure. Biochem Pharmacol 1983; 32: 2969–72.

    Article  PubMed  CAS  Google Scholar 

  48. Shinada M, Takizawa Y, Muto H. Effect of mercuric chloride on phospholipid peroxidation in rat. Nippon Koshu Eisei Zassi 1990; 37: 1010–4.

    CAS  Google Scholar 

  49. Miller DM, Lund BO, Woods JS. Reactivity of Hg(II) with superoxide: evidence for the catalytic dismutation of superoxide by Hg(II). J Biochem Toxicol 1991; 6: 293–8.

    Article  PubMed  CAS  Google Scholar 

  50. Lund BO, Miller DM, Woods JS. Mercury induced H202 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 1991; 42: S181–7.

    Article  Google Scholar 

  51. Nielsen JB, Andersen HR, Andersen O, Starklint H. Mercuric chloride induced kidney damage in mice: time course and effect of dose. J Toxicol Environ Health 1991; 34: 469–83.

    Article  PubMed  CAS  Google Scholar 

  52. Kone BC, Brenner RM, Gullans SR. Sulphydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule. J Membr Biol 1990; 113: 1–12.

    Article  PubMed  CAS  Google Scholar 

  53. Elliget KA, Phelps PC, Trump BF. HgCl2 induced alteration of actin filaments in cultured primary rat proximal tubule epithelial cells labelled with fluorescein phalloidin. Cell Biol Toxicol 1991; 7: 263–80.

    PubMed  CAS  Google Scholar 

  54. Joannidis M, Bonn G, Pfaller W. Lipidperoxidation -an initial event in the very early phase of experimental acute renal failure in the rat. Renal Physiol Biochem 1989; 12: 47–55.

    PubMed  CAS  Google Scholar 

  55. Le Grimellec C, Carrière S, Cardinal J, Giocondi MC. Effect of maleate on membrane physical state of brush border and basolateral membranes of the dog kidney. Life Sci 1982; 30: 1107–11.

    Article  PubMed  Google Scholar 

  56. Angielski S, Rogulski J. Effect of maleic acid on the kidney. I. Oxidation of Krebs cycle intermediates by various tissues of maleate intoxicated rats. Acta Biochem Polon 1962; 9: 357–65.

    CAS  Google Scholar 

  57. Pacanis A, Rogulski J, Ledochowski H, Angielski S. On the mechanism of maleate action on rat kidney mitochondria. Effect on substrate chain phosphorylation. Acta Biochem Polon 1975; 22: 1–10.

    CAS  Google Scholar 

  58. Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y. Toxicity and carcinogenicity of potassium bromate — a new renal carcinogen. Environ Health Persp 1990; 87: 309–35.

    CAS  Google Scholar 

  59. Sai K, Umemura T, Takagi A, Hasegawa R, Kurokawa Y The protective role of glutathione cysteine and vitamin C against oxidative DNA damage induced in rat kidney by potassium bromate. Jpn J Cancer Res 1992; 83: 45–51.

    Article  PubMed  CAS  Google Scholar 

  60. Rungby J, Ernst E. Experimentally induced lipid peroxidation after exposure to chromium mercury or silver: interactions with carbon tetrachloride. Pharmacol Toxicol 1992; 70: 205–7.

    Article  PubMed  CAS  Google Scholar 

  61. Hojo Y, Satomi Y. In vivo nephrotoxicity induced in mice by chromium (VI). Involvement of glutathione and chromium (V). Biol Trace Elem Res 1991; 31: 21–31.

    Article  PubMed  CAS  Google Scholar 

  62. Hannemann J, Duwe J, Baumann K. Iron ascorbic acid induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds. Cancer Chemother Pharmacol 1991; 28: 427–33.

    Article  PubMed  CAS  Google Scholar 

  63. Bompart G, Orfila C, Manuel Y. Cisplatin nephrotoxicity in cadmium pretreated rats. Enzymatic, functional and morphological studies. Nephron 1991; 58: 68–74.

    Article  PubMed  CAS  Google Scholar 

  64. Sadzuka Y, Shoji T, Takino Y Change of lipid peroxide levels in rat tissues after cisplatin administration. Toxicol Lett 1991; 57: 159–66.

    Article  PubMed  CAS  Google Scholar 

  65. Sadzuka Y, Shoji T, Takino Y Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicol Lett 1992; 62: 293–300.

    Article  PubMed  CAS  Google Scholar 

  66. Kameyama Y, Gemba M. The iron chelator deferoxamine prevents cisplatin induced lipid peroxidation in rat kidney cortical slices. Jpn J Pharmacol 1991; 57: 259–62.

    Article  PubMed  CAS  Google Scholar 

  67. Singh G. A possible cellular mechanism of cisplatin induced nephrotoxicity. Toxicology 1989; 58: 71–80.

    Article  PubMed  CAS  Google Scholar 

  68. Suzuki Y, Sudo J. Lipid peroxidation and generations of oxygen radicals induced by cephaloridine in renal cortical microsomes in rats. Jpn J Pharmacol 1990; 52: 233–43.

    Article  PubMed  CAS  Google Scholar 

  69. Suzuki Y, Sudo J. Changes in lipid peroxidation and activities of xanthine oxidase, superoxide dismutase and catalase in kidneys of cephaloridine administered rats. Jpn J Pharmacol 1989; 49: 43–51.

    Article  PubMed  CAS  Google Scholar 

  70. Tune BM, Fravert D, Hsu CY Thienamycin nephrotoxicity. Mitochondrial injury and oxidative effects of imipenem in the rabbit kidney. Biochem Pharmacol 1989; 38: 37779–83.

    Google Scholar 

  71. Suzuki Y, Sudo J. Changes in glutathione peroxidase system and pyridine nucleotide phosphate levels in kidneys of cephaloridine administered rats. Jpn J Pharmacol 1989; 51: 181–9.

    Article  PubMed  CAS  Google Scholar 

  72. Sausen PJ, Elfarra AA, Cooley AJ. Methimazole protection of rats against chemically induced kidney damage in vivo. J Pharmacol Exp Ther 1992; 260: 393–401.

    PubMed  CAS  Google Scholar 

  73. Shah S, Walker PD. Reactive oxygen metabolites in toxic acute renal failure. Renal Failure 1992; 14: 363–70.

    Article  PubMed  CAS  Google Scholar 

  74. Inselmann G, Hannemann J, Baumann K. Cyclosporine A induced lipid peroxidation and influence on glucose-6-phosphate in rat hepatic and renal microsomes. Res Commun Chem Pathol Pharmacol 1990; 68: 189–203.

    PubMed  CAS  Google Scholar 

  75. Walker RI, Lazzaro VA, Duggin GG, Horvath JS, Tiller DJ. Evidence that alterations in renal metabolism and lipid peroxidation may contribute to cyclosporine nephrotoxicity. Transplantation 1990; 50: 487–92.

    Article  PubMed  CAS  Google Scholar 

  76. Duggin GG, Mohandas J, Walker RJ. Mechanisms of acetaminophen (paracetamol) induced acute toxicity in the renal cortex. In: Solez K, Racussen LC, editors. Acute renal failure: diagnosis therapy and prevention. New York: Marcel Dekker, 1990: 163–71.

    Google Scholar 

  77. Beuter W, Cojocel C, Mueller W, Danaubauer HH, Mayer D. Peroxidative damage and nephrotoxicity of dichlorovinylcysteine in mice. J Appl Toxicol 1989; 9: 181–6.

    Article  PubMed  CAS  Google Scholar 

  78. Cojocel C, Beuter W, Mueller W, Mayer D. Lipid peroxidation a possible mechanism of trichloroethylene induced nephrotoxicity. Toxicology 1989; 55: 131–41.

    Article  PubMed  CAS  Google Scholar 

  79. Prast H, Pfaller W. Toxic properties of the mushroom Cortinarius orellanus (Fries). II. Impairment of renal function in rats. Arch Toxicol 1988; 62: 89–96.

    Article  PubMed  CAS  Google Scholar 

  80. Pfaller W, Gstraunthaler G, Prast H, Rupp L, Ruedl C, Michelitsch S, Moser M. Effects of the fungal toxin Orellanine on renal epithelium. In: Bach PH, Gregg NJ, Wilks MF, Delacruz L, editors. Nephrotoxicity: mechanisms, early diagnosis and therapeutic management. New York: Marcel Dekker, 1991: 63–72.

    Google Scholar 

  81. Dirheimer G, Creppy EE. Mechanisms of action of ochratoxin A. IARC SCI Publ 1991; 115: 117–86.

    Google Scholar 

  82. Omar RF, Rahimtula AD, Bartsch H. Role of cytochrome P-450 in ochratoxin A stimulated lipid peroxidation. J Biochem Toxicol 1991; 6: 203–6.

    Article  PubMed  CAS  Google Scholar 

  83. Raguenez-Viotte G, Thomas N, Filastre JP. Subcellular localization of celiptium-induced peroxidative changes in rat renal cortex. Arch Toxicol 1991; 65: 244–51.

    Article  PubMed  CAS  Google Scholar 

  84. Ansari NH, Rajaraman S. Allopurinol-induced nephrotoxicity: protection by the antioxidant, butylated hy-droxytoluene. Res Commun Phatol Pharmacol 1992; 75: 221–9.

    CAS  Google Scholar 

  85. Petry TW, Wolfgang GH, Jolly RA, Ochoa R, Donarski WJ. Antioxidant-dependent inhibition of diquat-in-duced nephrotoxicity in vivo. Toxicology 1992; 74: 33–43.

    Article  PubMed  CAS  Google Scholar 

  86. Portiila D, Millington D, Mandel LJ. Anoxia-induced arachidonic acid release in proximal tubules: role of phospholipase(s) activation. Kidney Int 1990; 37: 492.

    Google Scholar 

  87. Gronich JH, Bonventre JV, Nemenoff RA. Purification of a high-molecular-mass form of phospholipase A2 from rat kidney. Biochem J 1990; 271: 37–43.

    PubMed  CAS  Google Scholar 

  88. Nakamura H, Neneoff RA, Gronich JH, Bonventre JV. Subcellular characteristics of Phospholipase A2 activity in the rat kidney. J Clin Invest 1991; 87: 1810–8.

    Article  PubMed  CAS  Google Scholar 

  89. Weinberg JM. The cell biology of ischemic renal injury. Kidney Int 1991; 39: 476–500.

    Article  PubMed  CAS  Google Scholar 

  90. Pfaller W, Gstraunthaler G, Deetjen P. Biochemical aspects of cell injury in acute renal failure. In: Eliahou HE, editor. Acute renal Failure. London: John Libbey, 1981: 25–9.

    Google Scholar 

  91. Pappu AS, Fatterpaker P, Sreenivasan A. Phospholipase A2 of rat liver mitochondria in vitamin E deficiency. Biochem J 1976; 172: 349–56.

    Google Scholar 

  92. Ullrich KJ, Rumrich G, David C, Fritzsch G. Interaction of xenobiotics with organic anion and cation transport systems in renal proximal tubule cells. In: Anders MW, Dekant W, Henschler E, Oberleithner H, Silbernagl S, editors. Renal disposition and nephrotoxicity of xenobiotics. Academic Press, 1993: 97–115.

    Google Scholar 

  93. Tune BM, Hsu CY. Mechanisms of beta-lactam antibiotic nephrotoxicity. Toxicol Lett 1990; 53: 81–6.

    Article  PubMed  CAS  Google Scholar 

  94. Tune BM, Fravert D. Mechanisms of Cephalosporine nephrotoxicity: A comparison of cephaloridine and cephaloglycine. Kidney Int 1980; 18: 591–600.

    Article  PubMed  CAS  Google Scholar 

  95. Kacew S, Bergeron MG. Pathologic factors in amino-glycoside-induced nephrotoxicity. Toxicol Lett 1990; 51: 241–59.

    Article  PubMed  CAS  Google Scholar 

  96. Feldman S, Wang MY, Kaloyanides GJ. Amino-glycosides induce a phospholiposis in the renal cortex of the rat: an early manifestation of nephrotoxicity. J Pharmacol Exp Ther 1982; 220: 514–20.

    PubMed  CAS  Google Scholar 

  97. Adams SP, Notides AC. Metabolism and irreversible binding of diethylstilbestrol in the kidney of the Syrian golden hamster. Biochem Pharmacol 1986; 35: 2171–8.

    Article  PubMed  CAS  Google Scholar 

  98. Goldstein RS, Smith PF, Tarloff JB, Contardi L, Rush GF, Hook JB. Biochemical mechanisms of cephaloridine nephrotoxicity. Life Sci 1988; 42: 1809–16.

    Article  PubMed  CAS  Google Scholar 

  99. Pohl LR, George JW, Satoh H. Strain and sex differences in chloroform induced nephrotoxicity. Drug Metab Dispos 1984; 12: 304–8.

    PubMed  CAS  Google Scholar 

  100. Bach PH. Detection of chemical induced renal injury: the cascade of degenerative morphological and functional changes that follow the primary nephrotoxic insult and evaluation of these changes by in vitro methods. Toxicol Lett 1989; 15: 217–329.

    Google Scholar 

  101. Bach PH, Bridges JW. Chemically induced renal papillary necrosis and upper urothelial carcinoma. Part 1 and 2 CRC Crit Rev Toxicol 1985; 15: 217–329.

    Article  CAS  Google Scholar 

  102. Larson R, Ross D, Berlin T, Olsson LL, Moldeus P. Prostaglandin synthase catalyzed metabolic activation of p-phenetidine and acetaminophen by microsomes isolated from rabbit and human kidney. J Pharmacol Exp Ther 1985; 235: 475–80.

    Google Scholar 

  103. West PR, Harmann LS, Josephy PD, Mason RP. Acetaminophen: enzymic formation of a transient phenoxyl free radical. Biochem Pharmacol 1984; 33: 2933–6.

    Article  PubMed  CAS  Google Scholar 

  104. Boyd JA, Eling TE. Prostaglandin endoperoxide synthase-dependent cooxidation of acetaminophen to intermediates which covalently bind in vitro to rabbit renal microsomes. J Pharmacol Exp Ther 1981; 219: 659–64.

    PubMed  CAS  Google Scholar 

  105. Mohandas J, Duggin GG, Horvath JS, Tiller DJ. Regional differences in peroxidative activation of of paracetamol (acetaminophen) mediated by cytochrome P-450 mixed function oxidase and Prostaglandine endoperoxide synthase in rabbit kidney. Res Commun Pathol Pharmacol 1981; 34: 69–80.

    CAS  Google Scholar 

  106. Albano E, Rundgren M, Harvison PJ, Nelson SD, Moldeus P. Mechanism of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol 1985; 28: 306–11.

    PubMed  CAS  Google Scholar 

  107. Moore M, Thor H, Moore G, Nelson S, Moldeus P, Orrenius S. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem 1985; 260: 13035–40.

    PubMed  CAS  Google Scholar 

  108. Sabatini S, Koppera S, Manaligod J, Arruda JAL, Kurtzman NA. Role of urinary concentrating ability in the generation of toxic papillary necrosis. Kidney Int 1983; 23: 705–10.

    Article  PubMed  CAS  Google Scholar 

  109. Jakoby WB. The glutathione transferases in detoxification. In: Sies H, Wendel A, editors. Function of glutathione in liver and kidney. Springer Verlag 1978: 157–63.

    Chapter  Google Scholar 

  110. Boogaard PJ, Commandeur JNM, Mulder GJ, Vermeulen NPE, Nagelkerke JF. Toxicity of the cysteine-S-conjugates and mercapturic acids of four structurally related difluoroethylenes in isolated proximal tubular cells from rat kidney. Uptake of the conjugates and activation to toxic metabolites. Biochem Pharmacol 1989; 38: 3731–41.

    Article  PubMed  CAS  Google Scholar 

  111. Dekant W, Vamvakas S, Anders MW Bioactivation of hexachlorobutadiene by glutathione conjugation. Food Chem Toxicol 1990; 28: 285–93.

    Article  PubMed  CAS  Google Scholar 

  112. Appel GB, Kunis CL. Acute tubulointerstitial nephritis. Contemp Issues Nephrol 1983; 10: 151–8.

    Google Scholar 

  113. Kleinknecht D, Vanhille P, Morel-Maroger L, Kanfer A, Lemaitre V, Mery JP, Laederich J, Callard P. Acute interstitial nephritis due to drug hypersensitivity. An up-to-date review with a report of 19 cases. In: Hamburger J, Crosnier J, Maxwell MH, editors. Advances in Nephrology 12. Chicago: Year Book Medical Publishers, 1983: 277–308.

    Google Scholar 

  114. van Ypersele de Strihou C. Acute oliguric interstitial nephritis. Kidney Int 1979; 16: 751–65.

    Article  Google Scholar 

  115. Roman-Franco AA, Twirello M, Albini B, Ossi E, Milgrom F, Andres GA. Anti-basement membrane antibodies and antigen-antibody complexes in rabbit injected with mercuric chloride. Clin Immunol Immunpathol 1978; 9: 404–11.

    Article  Google Scholar 

  116. Ernest S. Model of gentamicin induced nephrotoxicity and its amelioration by calcium and thyroxine. Med Hypotheses 1989; 30: 195–202.

    Article  PubMed  CAS  Google Scholar 

  117. Nakamoto M, Shapiro J, Shanley PF, Chan L, Schrier RW In vitro and in vivo protective effect of atriopeptin III on ischemic acute renal failure. J Clin Invest 1987; 80: 698–705.

    Article  PubMed  CAS  Google Scholar 

  118. Shaw SG, Weidmann P, Hodler J, Zimmermann A, Paternostro A. Atrial natriuretic peptide protects against acute ischemic renal failure in the rat. J Clin Invest 1987; 80: 1232–7.

    Article  PubMed  CAS  Google Scholar 

  119. Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 1989; 84: 1757–61.

    Article  PubMed  CAS  Google Scholar 

  120. Coimbra TM, Cieslinski DA, Humes HD. Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol 1990; 259: F438–43.

    Google Scholar 

  121. Beck FX, Thurau K, Gstraunthaler G. Pathophysiology and pathobiochemistry of acute renal failure. In: Seldin DW, Giebish G, editors. The kidney: physiology and pathophysiology — 2nd edition. New York: Raven Press, 1992: p. 3157–79.

    Google Scholar 

  122. Mason J, Beck F, Dörge A, Rick R, Thurau K. Intracellular electrolyte composition following renal ischemia. Kidney Int 1981; 20: 61–70.

    Article  PubMed  CAS  Google Scholar 

  123. Mason J, Thorhorst J, Welsch J. Role of medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 1984; 26: 283–93.

    Article  PubMed  CAS  Google Scholar 

  124. Hellberg POA, Källskog Ö, Wolgast M. Nephron function in the early phase of ischemic renal failure. Significance of erythrocyte trapping. Kidney Int 1990; 38: 432–9.

    Article  PubMed  CAS  Google Scholar 

  125. Klausner JM, Paterson IS, Goldman G, Kobzik L, Rodzen C, Lawrence R, Valeri CR, Shepro D, Hechtman HB. Postischemic renal injury is mediated by neutrophils and leucotrienes. Am J Physiol 1989; 256: F794–802.

    Google Scholar 

  126. Willinger CC, Schramek H, Pfaller K, Pfaller W Tissue distribution of neutrophils in postischemic acute renal failure. Virch Arch B Cell Pathol 1992; 62: 237–43.

    Article  CAS  Google Scholar 

  127. Schiller HJ, Andreoni KA, Bulkley GB. Free radical ablation for the prevention of postischemic renal failure following renal transplantation. Klin Wochenschr 1991; 69: 1083–94.

    Article  PubMed  CAS  Google Scholar 

  128. Zager RA, Gamelin LM. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am J Physiol 1989; 256: F446–55.

    Google Scholar 

  129. Nishitsutsuji-Uwo JM, Ross BD, Krebs HA. Metabolic activities of the isolated perfused rat kidney. Biochem J 1967; 103: 852–62.

    Google Scholar 

  130. Ross BD, Epstein FH, Leaf A. Sodium reabsorption in the perfused rat kidney. Am J Physiol 1973; 225: 1165–71.

    PubMed  CAS  Google Scholar 

  131. Epstein FH, Brosnan JT, Tange JD, Ross BD. Improved function with amino acids in the isolated perfused kidney. Am J Physiol 1982; 243: F284–92.

    Google Scholar 

  132. Baines AD, Shaikh N, Ho P. Mechanisms of perfused kidney cytoprotection by alanine and glycine. Am J Physiol 1990; 259: F80–7.

    Google Scholar 

  133. Heyman SN, Spokes K, Rosen S, Epstein FH. Mechanism of glycine protection in hypoxic injury: analogies with glycine receptor. Kidney Int 1992; 42: 41–5.

    Article  PubMed  CAS  Google Scholar 

  134. Brezis M, Rosen S, Silva P, Epstein FH. Selective volunerability of the medullary thick ascendig limb to anoxia in the isolated perfused rat kidney. J Clin Invest 1984; 73: 182–90.

    Article  PubMed  CAS  Google Scholar 

  135. Brezis M, Rosen S, Stoff JS, Spokes K, Silva P, Epstein FH. Inhibition of prostaglandin synthesis in rat kidney perfused with and without erythrocytes: implication for analgesic nephropathy. Miner Electrol Metab 1986; 12: 326–32.

    CAS  Google Scholar 

  136. Silva P, Hallac R, Spokes K, Epstein FH. Relationship among gluconeogenesis, Q02, and Na+ transport in the perfused rat kidney. Am J Physiol 1982; 11: F508–13, 1982.

    Google Scholar 

  137. Shanley PF, Brezis M, Spokes K, Silva P, Epstein FH, Rosen P. Differential responsiveness of proximal tubule segments to metabolic inhibitors in the isolated perfused rat kidney. Am J Kidney Dis 1986; 7(1): 76–83.

    PubMed  CAS  Google Scholar 

  138. Schurek HJ, Kriz W. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab Invest 1985; 53(2): 145–55.

    PubMed  CAS  Google Scholar 

  139. Kopolović J, Brezis M, Spokes K, Silva P, Epstein F, Rosen S. The vulnerability of the thin descending limbs of Henle’s Loop in the isolated perfused rat kidney. Am J Kidney Dis 1989; 14(1): 25–30.

    PubMed  Google Scholar 

  140. Brezis M, Rosen S, Spokes K, Silva P, Epstein FH. Transport dependent anoxic cell injury in the isolated perfused rat kidney. Am J Pathol 1984; 116: 327–41.

    PubMed  CAS  Google Scholar 

  141. Brezis M, Rosen S, Silva P, Spokes K, Epstein FH. Mitochondrial activity: a possible determinant of anoxic injury in renal medulla. Experientia 1986; 42: 570–2.

    Article  PubMed  CAS  Google Scholar 

  142. Epstein FH, Silva P, Spokes K, Brezis M, Rosen S. Renal medullary Na-K-ATPase and hypoxic injury in perfused rat kidneys. Kidney Int 1989; 36: 768–72.

    Article  PubMed  CAS  Google Scholar 

  143. Brezis M, Rosen S, Silva P, Spokes K, Epstein FH. Polyene toxicity in renal medulla: injury mediated by transport activity. Science 1984; 224: 66–8.

    Article  PubMed  CAS  Google Scholar 

  144. Brezis M, Rosen S, Silva P, Epstein FH. Transport activity modifies thick ascending limb damage in the isolated perfused kidney. Kidney Int 1984; 25: 65–72.

    Article  PubMed  CAS  Google Scholar 

  145. Brezis M, Rosen S, Spokes K, Silva P, Epstein FH. Substrates induce hypoxic injury to medullary thick limbs of isolated rat kidneys. Am J Physiol 1986; 251: F710–7.

    Google Scholar 

  146. Aukland K, Krog J. Renal oxygen tension. Nature 1960; 188: 671-???.

    Article  PubMed  CAS  Google Scholar 

  147. Leichtweiss HP, Lubbers DW, Weiss CH, Baumgartl H, Reschke W. The oxygen supply of the rat kidney: measurement of intrarenal PO2. Pflugers Arch 1969; 309: 328–49.

    Article  PubMed  CAS  Google Scholar 

  148. Baumgartl H, Leichtweiss HP, Libbers DW, Weiss CH, Huland H. The oxygen supply of the dog kidney: measurements of intrarenal PO2. Microvasc Res 1972; 4: 247–57.

    Article  PubMed  CAS  Google Scholar 

  149. Epstein FH, Balaban RS, Ross BD. Redox state of cytochrome aa3 in isolated perfused rat kidney. Am J Physiol 1982; 243: F356–63.

    Google Scholar 

  150. Brezis M, Rosen S, Silva P, Epstein FH. Renal ischemia: a new perspective. Kidney Int 1984; 26: 375–83.

    Article  PubMed  CAS  Google Scholar 

  151. Silva P, Rosen S, Spokes K, Taylor M, Epstein FH. Influence of endogenous prostaglandins on mTAL injury. J Am Soc Nephrol 1990; 1: 8gt08–14.

    Google Scholar 

  152. Brezis M, Heyman SN, Dinour D, Epstein FH, Rosen S. Role of nitric oxide in renal medullary oxygenation, studies in isolated and intact rat kidneys. J Clin Invest 1991; 88: 390–5.

    Article  PubMed  CAS  Google Scholar 

  153. Radermacher J, Forstermann U, Frolich JC. Endothelium-derived relaxing factor influences renal vascular resistance. Am J Physiol 1990; 259: F9–17.

    Google Scholar 

  154. Epstein FH, Rosen S, Galicka-Piskorska G, Spokes K, Brezis M, Silva P. Relation of adenosine to medullary injury in the perfused rat kidney. Miner Electrol Metab 1990; 16: 185–90.

    CAS  Google Scholar 

  155. Dinour D, Brezis M. An emerging pathophysiological role for intrarenal adenosine. Exp Nephrol 1993 (in press).

    Google Scholar 

  156. Dinour D, Brezis M. Effects of adenosine upon intrarenal oxygenation. Am J Physiol 1991; 261: F787–91.

    Google Scholar 

  157. Cantley LG, Fuhro R, Silva P. Isolated mTAL cells produce an inhibitor of ouabain-sensitive oxygen consumption. Am J Physiol 1991; 260: F210–5.

    Google Scholar 

  158. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 1991; 40: 632–42.

    Article  PubMed  CAS  Google Scholar 

  159. Heyman SN, Brezis M, Reubinoff CA, Greenfeld Z, Lechene C, Epstein F, Rosen S. Acute renal failure with selective medullary injury in the rat. J Clin Invest 1988; 82: 401–12.

    Article  PubMed  CAS  Google Scholar 

  160. Perico N, Dadan J, Remuzzi G. Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J Am Soc Nephrol 1990; 1: 76–83.

    PubMed  CAS  Google Scholar 

  161. Endre ZH, Nicholls LG, Ratcliffe PJ, Ledingham JGG. Prevention and reversal of mercuric chloride induced increases in renal vascular resistance by Captopril. In: Endre ZH, editor. Nephrotoxicity: in vitro to in vivo, animal to man. New York: Plenum Press, 1989: 103–6.

    Chapter  Google Scholar 

  162. Cantley LG, Spokes K, Clark B, Kuhlik A, Epstein FH. Endothelin receptor antagonist decreases the effect of iothalamate on renal blood flow. J Am Soc Nephrol 1992; 3: 434.

    Google Scholar 

  163. Rossi N, Ellis V, Kontry T, Gunther S, Churchill P, Bidani A. The role of adenosine in HgCl2 induced acute renal failure in rats. Am J Physiol 1990; 258: F1554–60.

    Google Scholar 

  164. Ratcliffe P, Endre Z, Nicholls L, Tange J, Ledingham J. The isolated perfused rat kidney: filtering and non filtering models in the assessment of altered renal vascular resistance in nephrotoxicity. In: Endre ZH, editor. Nephrotoxicity: in vitro to in vivo, animal to man. Plenum Press, 1989: 659–62.

    Google Scholar 

  165. Firth JD. Endothelin: an important factor in acute renal failure? Lancet 1988; 19(2): 1179–82.

    Article  Google Scholar 

  166. Lieberthal W, Wolf EF, Rennke HG, Valeri CR, Levinsky NG. Renal ischemia and reperfusion impair endothelium dependent vascular relaxation. Am J Physiol 1989; 256: F894–900.

    Google Scholar 

  167. Perico N, Dadan J, Gabanelli M, Remuzzi G. Cyclo-oxygenase products and atrial natriuretic peptide modulate renal response to endothelin. J Pharmacol Exp Ther 1990; 252: 1213–20.

    PubMed  CAS  Google Scholar 

  168. Malis CD, Cheung JY, Leaf A, Bonventre JV. Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol 1983; 245: F735–42.

    Google Scholar 

  169. Lieberthal W Effects of atrial natriuretic factor in ischemic renal injury: studies in the isolated erythro-cyte-perfused rat kidney. Clin Res 1991; 39: 157–65.

    PubMed  CAS  Google Scholar 

  170. Loutzenhiser R, Epstein M. Renal microvascular actions of calcium antagonists. J Am Soc Nephrol 1990; 1: S3–12.

    Google Scholar 

  171. Brezis M, Shina A, Kidroni G, Epstein FH, Rosen S. Calcium and hypoxic injury in the renal medulla of the perfused rat kidney. Kidney Int 1988; 34: 186–94.

    Article  PubMed  CAS  Google Scholar 

  172. Silva P, Rosen S, Spokes K, Epstein FH. Effect of glycine on medullary thick ascending limb injury in perfused rat kidneys. Kidney Int 1991; 39: 653–8.

    Article  PubMed  CAS  Google Scholar 

  173. Heyman SN, Brezis M, Epstein FH, Spokes K, Rosen S. Effect of glycine and hypertrophy on renal outer medullary hypoxic injury in ischemia reflow and contrast nephropathy. Am J Kidney Dis 1992; 19: 578–86.

    PubMed  CAS  Google Scholar 

  174. Olsen TS, Hansen HE. Ultrastructure of medullary tubules in ischemic acute tubular necrosis and acute interstitial nephritis in man. AMPIS 1990; 98: 1139–48.

    CAS  Google Scholar 

  175. Steinhausen M, Snoei H, Parekh N, Baker R, Johnson PC. Hydronephrosis: a new method to visualize vas afferens, efferens, and glomerular network. Kidney Int 1983; 23: 794–806.

    Article  PubMed  CAS  Google Scholar 

  176. Loutzenhiser R, Epstein M, Horton C. Inhibition by diltiazem of pressure-induced afferent vasoconstriction in the isolated perfused rat kidney. Am J Cardiol 1987; 59: 72–5.

    Article  Google Scholar 

  177. Hayashi K, Epstein M, Loutzenhiser R. Pressure-induced vasoconstriction of renal microvessels in nor-motensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res 1989; 65: 1475–84.

    Article  PubMed  CAS  Google Scholar 

  178. Loutzenhiser R, Hayashi K, Epstein M. Calcium antagonists augment glomerular filtration rate of angiotensin II-vasoconstricted isolated perfused rat kidneys by dilating afferent but not efferent arterioles. J Cardiovasc Pharmacol 1988; 9 (suppl 1): 149.

    Google Scholar 

  179. Loutzenhiser R, Eptstein M. The renal hemodynamic effects of calcium antagonists. In: Epstein M, Loutzenhiser R, editors. Calcium antagonists and the kidney. Philadelphia: Hanley and Belfus, 1989 33–75.

    Google Scholar 

  180. Loutzenhiser R, Hayashi K, Epstein M. Divergent effects of KCll-induced depolarization on afferent and efferent arterioles. Am J Physiol 1989; 257: F561–4.

    Google Scholar 

  181. Loutzenhiser R, Epstein M, Hayashi K, Horton C. Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol 1990; 258: F61–8.

    Google Scholar 

  182. Loutzenhiser R, Hayashi K, Epstein M. Atrial natriuretic peptide reverses afferent arteriolar vasoconstriction and potentiates efferent artriolar vasoconstriction in the isolated perfused rat kidney. J Pharmacol Exp Ther 1988; 246: 522–8.

    PubMed  CAS  Google Scholar 

  183. Takenaka T, Hashimoto Y, Epstein M. Diminished acetylcholine-induced vasodilation in renal microvessels of cyclosporine-treated rats. J Am Soc Nephrol 1992; 3: 42–50.

    PubMed  CAS  Google Scholar 

  184. Casellas D, Navar LG. In vitro perfusion of jux-tamedullary nephrons in rats. Am J Physiol 1984; 246: F349–58.

    Google Scholar 

  185. Casellas D, Carmines PK, Navar LG. Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int 1985; 28: 752–9.

    Article  PubMed  CAS  Google Scholar 

  186. Moore LC, Casellas D. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary I afferent arterioles. Kidney Int 1990; 37: 1402–8.

    Article  PubMed  CAS  Google Scholar 

  187. Carmines PK, Morrison TK, Navar LG. Angiotensin II effects on microvascular diameters of in vitro blood-perfused juxtamedullary nephrons. Am J Physiol 1986; 251: F610–8.

    Google Scholar 

  188. Carmines PK, Navar LG. Disparate effects of Ca channel blockade on afferent and efferent arteriolar respones to angiotensin II. Am J Physiol 1989; 256: F1015–20.

    Google Scholar 

  189. Inscho EW, Carmines PK, Cook AK, Navar LG. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension. Hypertension 1990; 15: 748–52.

    Article  PubMed  CAS  Google Scholar 

  190. Edwards RM. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol 1983; 244: F526–34.

    Google Scholar 

  191. Yuan BH, Robinette JB, Conger JD. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am J Physiol 1990; 258: F741–50.

    Google Scholar 

  192. Conger JD, Falk SA, Robinette JB. Angiotensin II-induced changes in smooth muscle calcium in isolated renal arterioles. J Am Soc Nephrol 1993; 3(11): 1792–803.

    PubMed  CAS  Google Scholar 

  193. Edwards RM, Trizna W, Kinter LB. Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol 1989; 256: F274–8.

    Google Scholar 

  194. Lanese DM, Conger JD. Effects of endothelin receptor antagonist on cyclosporine-induced vasoconstriction in isolated rat renal arterioles. J Clin Invest 1993; 91: 2144–9.

    Article  PubMed  CAS  Google Scholar 

  195. Lanese DM, Yuan BH and Conger JD. The effects of alkaline phosphatase III on the isolated afferent and efferent arterioles of the rat kidney. Am J Physiol 1991; 261 (Renal Fluid Electrolyte Physiol 30): Fl 102–9.

    Google Scholar 

  196. Myers BD. Cyclosporine nephrotoxicity. Kidney Int 1986; 30: 964–74.

    Article  PubMed  CAS  Google Scholar 

  197. Lanese DM, Conger JD. Endothelin-induced vasocon-striction is mediated by platelet activating factor in afferent but not efferent arteriole. J Am Soc Nephrol 1992; 3: 565A.

    Google Scholar 

  198. Weinberg JM. Oxygen deprivation-induced injury to isolated rabbit kidney tubules. J Clin Invest 1985; 76: 1193–208.

    Article  PubMed  CAS  Google Scholar 

  199. Weinberg JM, David JA, Abarzua M, Rajan T. Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Clin Invest 1987; 80: 1446–54.

    Article  PubMed  CAS  Google Scholar 

  200. Weinberg JM, Davis JA, Roeser NF, Venkatachalam MA. Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis. J Clin Invest 1991; 87: 581–90.

    Article  PubMed  CAS  Google Scholar 

  201. Garza-Quintero R, Lopez-Ortega J, Stein JH, Venkatachalam MA. Alanine protects rabbit proximal tubules against anoxic injury in vitro. Am J Physiol 1990; 258: F1075–83.

    Google Scholar 

  202. Almeida ARP, Wetzels JFM, Bunnachak D, Burke TJ, Chaimovitz C, Hammond WS, Schrier RW Acute phosphate depletion and in vitro rat proximal tubule injury: protection by glycine and acidosis. Kidney Int 1992; 41: 1494–500.

    Article  PubMed  CAS  Google Scholar 

  203. Humes HD, Nguyen VD, Cieslinski DA, Messana JM. The role of free fatty acids in hypoxia-induced injury to renal proximal tubule cells. Am J Physiol 1989; 256: F688–96.

    Google Scholar 

  204. Bonventre JV, Cheung JY. Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol 1985; 249: C149–59.

    Google Scholar 

  205. Takano T, Soltoff SP, Murdaugh S, Mandel LJ. Intracellular respiratory dysfunction and cell injury in short term anoxia of rabbit proximal tubules. J Clin Invest 1985; 76: 2377–84.

    Article  PubMed  CAS  Google Scholar 

  206. Zager RA, Gmur DJ, Schimpf BA, Bredl CR, Foerder CA. Evidence against increased hydroxyl radical production during oxygen deprivation-reoxygenation proximal tubular injury. J Am Soc Nephrol 1992; 2: 1627–33.

    PubMed  CAS  Google Scholar 

  207. Zager RA, Foerder CA. Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity. J Clin Invest 1992; 89: 989–95.

    Article  PubMed  CAS  Google Scholar 

  208. Zager RA. Combined mannitol and deferoxamine therapy for myohemoglobinuric renal injury and oxidant tubular stress. Mechanistic and therapeutic implications. J Clin Invest 1992; 90: 711–9.

    Article  PubMed  CAS  Google Scholar 

  209. Cheung JT, Witty RT, Robinson RR, Yager WE. Amphotericin B and nephrotoxicity: increased renal resistance and tubule permeability. Kidney Int 1982; 22: 626–33.

    Article  Google Scholar 

  210. Sawayi BP, Weinprecht H, Campbell WR, Lorenz JN, Webb RL, Briggs JP, Schnermann J. Direct vasoconstriction as a possible cause for amphotericin B induced nephrotoxicity in rats. J Clin Invest 1991; 87: 2097–107.

    Article  Google Scholar 

  211. Zager RA, Bredl CR, Schimpf BA. Direct amphotericin B-mediated tubular toxicity. Assessments of selected cytoprotective agents. Kidney Int 1992; 41: 1588–94.

    Article  PubMed  CAS  Google Scholar 

  212. Olivero JJ, Lozano-Mendez, J, Ghafary EM, Eknoyan G, Suki WN. Mitigation of amphotericin B nephro-toxicity by mannitol. Brit Med J 1975; 1: 550–1.

    Article  PubMed  CAS  Google Scholar 

  213. Tolins JP, Raij L. Chronic amphotericin B nephrotoxicity in the rat: protective effect of calcium channel blockade. J Am Soc Nephrol 1991; 2: 98–102.

    PubMed  CAS  Google Scholar 

  214. Fielding RM, Smith PC, Wang LH, Porter, Guo LSS. Comparative pharmacokinetics of amphotericin B after administration of a novel colloidal delivery system, ABCD, and a conventional formulation to rats. Antimicrob Agents Chemother 1991; 35: 1208–13.

    Article  PubMed  CAS  Google Scholar 

  215. Guo LSS, Fielding RM, Lasic DD, Hamilton RL, Mufson D. Novel antifungal drug delivery: stable amphotericin B-cholesteryl sulfate discs. Int J Pharm 1991; 75: 45–54.

    Article  CAS  Google Scholar 

  216. Guo LSS, Fielding RM, Mufson D. Pharmacokinetic study of a novel amphotericin B colloidal dispersion with improved therapeutic index. Ann NY Acad Sci 1991; 618: 586–8.

    Article  Google Scholar 

  217. Sanders SW, Buchi KN, Goddard MS, Lang JK, Tolman KG. Single-dose pharmacokinetics and tolerance of a cholesteryl sulfate complex of amphotericin B administered to healthy volunteers. Antimicrob Agents Chemother 1991; 35: 1029–34.

    Article  PubMed  CAS  Google Scholar 

  218. Clemons KV, Stevens DA. Comparative efficacy of amphotericin B colloidal dispersion (ABCD) and amphotericin B deoxycholate suspension in treatment of murine coccidioidomycosis. Antimicrob Agents Chemother 1991; 35: 1829–33.

    Article  PubMed  CAS  Google Scholar 

  219. Andreoli TE. On the anatomy of amphotericin B-cholesterol pores in lipid bilayer membranes. Kidney Int 1973; 4: 337–45.

    Article  PubMed  CAS  Google Scholar 

  220. Zager RA, O’Quigley J, Zager BK, Alpers CE, Shulman HM, Gamelin LM, Stewart P, Thomas ED. Acute renal failure following bone marrow transplantation: a retrospective study of 272 patients. Am J Kidney Dis 1989; 13: 210–6.

    PubMed  CAS  Google Scholar 

  221. Christiansen KJ, Bernard EM, Gold JWM, Armstrong D. Distribution and activity of amphotericin B in humans. J Infect Dis 1985; 152: 1037–43.

    Article  PubMed  CAS  Google Scholar 

  222. Palier MS, Hedlund BE. Role of iron in postischemic renal injury in the rat. Kidney Int 1988; 34: 474–80.

    Article  Google Scholar 

  223. Zager RA, Schimpf BA, Bredl CR, Gmur DJ. Inorganic iron effects on in vitro hypoxic proximal tubular cell injury. J Clin Invest 1993; 91: 702–8.

    Article  PubMed  CAS  Google Scholar 

  224. Pfaller W, Gstraunthaler G. Kotanko, P. Compartments and surfaces in renal cells. In: Kinne RHK, editor. Renal biochemistry, cells, membranes, molecules. Amsterdam: Elsevier Science Publishers BV, 1985: 1–62.

    Google Scholar 

  225. Horster MF, Sone M. Primary culture of isolated tubule cells of defined segmental origin. Method Enzymol 1990; 191: 409–27.

    Article  CAS  Google Scholar 

  226. Gstraunthaler GJA. Epithelial cells in tissue culture. Renal Physiol Biochem 1988; 11: 1–42.

    PubMed  CAS  Google Scholar 

  227. Striker GE, Striker LJ. Biology of disease. Glomerular cell culture. Lab Invest 1985; 53: 122–31.

    PubMed  CAS  Google Scholar 

  228. Green N, Algren A, Hoyer J, Triche T, Burg M. Differentiated lines of cells from rabbit renal medullary thick ascending limbs grown on amnion. Am J Physiol 1985; 249: C97–104.

    Google Scholar 

  229. Hall HG, Farson GA, Bissell NJ. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 1982; 79: 4672–6.

    Article  PubMed  CAS  Google Scholar 

  230. Minuth WW, Rudolph U. A compatible support system for cell culture in biomedical research. Cytotechnol 1990; 4: 181–9.

    Article  CAS  Google Scholar 

  231. Zuk A, Matlin KS, Hay ED. Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and loose apical-basal polarity. J Cell Biol 1989; 108: 903–19.

    Article  PubMed  CAS  Google Scholar 

  232. Handler JS, Preston AS, Steele RE. Factors affecting differentiation of epithelial transport and responsiveness to hormones. Fed Proc 1984; 43: 2221–4.

    PubMed  CAS  Google Scholar 

  233. Kersting U, Joha H, Steigner W, Gassner B, Gstraunthaler G, Pfaller W, Oberleithner H. Fusion of cultured dog kidney cells: I. technique, fate of plasma membranes and cell nuclei. J Membrane Biol 1989; 111: 37–48.

    Article  CAS  Google Scholar 

  234. Audus KL, Barrel RL, Hidalgo IJ, Borchardt RT. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharmaceut Res 1990; 7: 435–51.

    Article  CAS  Google Scholar 

  235. Handler JS, Green N, Steele RE. Cultures as epithelial models: porous-bottom culture dishes for studying transport and differentiation. Method Enzymol 1989; 171: 736–44.

    Article  CAS  Google Scholar 

  236. Leiderman LJ, Tucker JA, Dennis VW Growth and differentiation of opossum kidney cells on micro-scopically transparent microporous membranes. Tissue Cell 1989; 21: 355–60.

    Article  PubMed  CAS  Google Scholar 

  237. Biber J, Malmström K, Reshkin S, Murer H. Phosphate transport in established renal epithelial cell lines. Method Enzymol 1990; 1991: 494–505.

    Google Scholar 

  238. Ruedl C, Gstraunthaler G, Moser M. Differential inhibitory action of the fungal toxin orellanine on alkaline phosphatase isoenzymes. Biochim Biophys Acta 1989; 991: 280–3.

    Article  PubMed  CAS  Google Scholar 

  239. Fouda AK, Fauth C, Roch-Ramel F. Transport of organic cations by kidney epithelial cell line LLC-PK1. J Pharmacol Exp Ther 1990; 252: 286–92.

    PubMed  CAS  Google Scholar 

  240. Handler JS. Overview of epithelial polarity. Ann Rev Physiol 1989; 51: 729–40.

    Article  CAS  Google Scholar 

  241. Rodriguez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science 1989; 245: 718–25.

    Article  PubMed  CAS  Google Scholar 

  242. Simons K, Fuller SD. Cell surface polarity in epithelia. Ann Rev Cell Biol 1985; 1: 243–88.

    Article  PubMed  CAS  Google Scholar 

  243. Lever JE. Variant (MDCK) kidney epithelial cells altered in response to inducers of dome formation and differentiation. J Cell Physiol 1985; 122: 45–52.

    Article  PubMed  CAS  Google Scholar 

  244. Taub M. Retinoic acid modulates dome formation by MDCK cells in defined medium. J Cell Physiol 1989; 141: 24–32.

    Article  PubMed  CAS  Google Scholar 

  245. Simmons NL. Tissue culture of established renal cell lines. Method Enzymol 1990; 191: 426–36.

    Article  CAS  Google Scholar 

  246. Ullrich KJ, Rumrich G. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 1988; 254: F453–62.

    Google Scholar 

  247. Ullrich KJ, Rumrich G, Gemborys MW, Dekant W Renal transport and nephrotoxicity. In: Bach PH, Gregg NJ, Wilks MF, Delacruz L, editors. Nephrotoxicity. Mechanisms, early diagnosis, and therapeutic management. New York/Basel/Hong Kong: Marcel Dekker Inc, 1991: 1–8.

    Google Scholar 

  248. Gstraunthaler G, Pfaller W The use of cultured renal epithelial cells in in vitro assessment of xenobiotic induced nephrotoxicity. In: Anders MW, Dekant W, Henschler E, Oberleithner H, Silbernagl S, editors. Renal disposition and nephrotoxicity of xenobiotics. Academic Press, 1993; 27–61.

    Google Scholar 

  249. Pfaller W, Gstraunthaler G, Kersting U, Oberleithner H. Carbonic anhydrase activity in MDCK cells: evidence for intercalated cell properties. Renal Physiol Biochem 1989; 12: 328–37.

    PubMed  CAS  Google Scholar 

  250. Boogaard PJ, Nagelkerke JF, Mulder GJ. Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity. Chem-Biol Interact 1990; 76: 251–92.

    Article  PubMed  CAS  Google Scholar 

  251. Vandewalle A, Lelongt B, Geniteau-Legendre M, Baudouin B, Antoine M, Estrade S, Chatelet P, Cassingena R, Ronco P. Maintenance of proximal and distal cell functions in SV40-transformed tubular cell lines derived from rabbit kidney cortex. J Cell Physiol 1989; 141: 203–21.

    Article  PubMed  CAS  Google Scholar 

  252. Schaeffer WI. Terminology associated with cell, tissue and organ culture, molecular biology and molecular genetics. In Vitro Cell Dev Biol 1990; 26: 97–101.

    Article  PubMed  CAS  Google Scholar 

  253. Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC. Use of extracellular matrix components for cell culture. Anal Biochem 1987; 166: 1–13.

    Article  PubMed  CAS  Google Scholar 

  254. Gstraunthaler G, Steinmassl D, Pfaller W Renal cell cultures: a tool for studying tubular function and nephrotoxicity. Toxicol Lett 1990; 53: 1–7.

    Article  PubMed  CAS  Google Scholar 

  255. Anders MW. Metabolism of drugs by the kidney. Kidney Int 1980; 18: 636–47.

    Article  PubMed  CAS  Google Scholar 

  256. Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ. Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol 1990; 106: 1–19.

    Article  PubMed  CAS  Google Scholar 

  257. Schaeffer VH, Stevens JL. The transport of S-cysteine conjugates in LLC-PK1 cells and its role in toxicity. Mol Pharmacol 1987; 31: 506–12.

    PubMed  CAS  Google Scholar 

  258. Stevens J, Hayden P, Taylor G. The role of glutathione conjugate metabolism and cysteine conjugate ß-lyase in the mechanism of S-cysteine conjugate toxicity in LLC-PK1 cells. J Biol Chem 1986; 261: 3325–32.

    PubMed  CAS  Google Scholar 

  259. Golenhofen N, Heuner A, Mildenberger S, Schwegler J, Silbernagl S. Mercapturic acid formation in cultured opossum kidney cells. Toxicol Lett 1990; 53: 261.

    Article  PubMed  CAS  Google Scholar 

  260. Endicott JA, Ling V. The biochemistry of the P-glycoprotein-mediated multidrug resistance. Ann Rev Biochem 1989; 58: 137–71.

    Article  PubMed  CAS  Google Scholar 

  261. Pastan I, Gottesman MM. Multidrug resistance. Ann Rev Med 1991; 42: 277–86.

    Article  PubMed  CAS  Google Scholar 

  262. Horio M, Pastan I, Gottesman MM, Handler JS. Transepithelial transport of vinblastine by kidney-derived cell lines. Application of a new kinetic model to estimate in situ Km of the pump. Biochim Biophys Acta 1990; 1027: 116–22.

    Article  PubMed  CAS  Google Scholar 

  263. Lieberman DM, Reithmeier RAF, Ling V, Charuk JHM, Goldberg H, Skorecki KL. Identification of Pglycoprotein in renal brush border membranes. Biochem Biophys Res Comm 1989; 162: 244–52.

    Article  PubMed  CAS  Google Scholar 

  264. Gstraunthaler G, Pfaller W. Continuous renal cell lines as in vitro tools to study nephrotoxicity. In: Watson RR, editor. In vitro methods of toxicology. CRC Press, 1992: 93–115.

    Google Scholar 

  265. Linseman DA, Raczniak TJ, Aaron CS, Bacon JA. Comparative cytotoxicity rankings of four aminoglycoside antibiotics in the Chang, SIRC and LLC-PK1 cell lines. ATLA 1990; 18: 283–90.

    Google Scholar 

  266. Bacon JA, Linseman DA, Raczniak TJ. In vitro cytotoxicity of tetracyclines and aminoglycosides in LLC-PK1, MDCK and Chang continuous cell lines. Toxicol in Vitro 1990; 4: 384–88.

    Article  PubMed  CAS  Google Scholar 

  267. Chen Q, Stevens JL. Inhibition of iodoacetamide and t-butylhydroperoxide toxicity in LLC-PK1 cells by anti-oxidants: a role for lipid peroxidation in alkylation induced cytotoxicity. Arch Biochem Biophys 1991; 284: 422–30.

    Article  PubMed  CAS  Google Scholar 

  268. Castaing N, Merlet D, Cambar J. Cis-platin cytotoxicity in human and rat tubular cell cultures. Toxicol In Vitro 1990; 4: 396–8.

    Article  PubMed  CAS  Google Scholar 

  269. Hori R, Yamamoto K, Saito H, Kohno M, Inui KL Effect of aminoglycoside antibiotics on cellular functions of kidney epithelial cell line (LLC-PK1): a model system for aminoglycoside nephrotoxicity. J Pharmacol Exp Ther 1984; 230: 742–48.

    CAS  Google Scholar 

  270. Acosta D, Sorensen EMB, Anuforo DC, Mitchell DB, Ramos K, Santone KS, Smith MA. An in vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell Dev Biol 1985; 21: 495–504.

    Article  PubMed  CAS  Google Scholar 

  271. Oberleithner H, Vogel U, Kersting U. Madin-Darby canine kidney cells. I. Aldosterone-induced domes and their evaluation as a model system. Pflügers Arch 1990; 416: 526–32.

    Article  PubMed  CAS  Google Scholar 

  272. Shaw AJ, Clothier RH, Balls M. Loss of trans-epithelial impermeability of a confluent monolayer of Madin-Darby canine kidney (MDCK) cells as a determinant of ocular irritancy potential. ATLA 1990; 18: 145–51.

    Google Scholar 

  273. Rabito CA. Occluding junctions in a renal cell line (LLC-PK1) with characteristics of proximal tubular cells. Am J Physiol 1986; 250: F734–43.

    Google Scholar 

  274. Rabito CA. Reassembly of the occluding junctions in a renal cell line with characteristics of proximal tubular cells. Am J Physiol 1986; 251: F978–87.

    Google Scholar 

  275. Powell DW Barrier function of epithelia. Am J Physiol 1981; 241: G275–88.

    Google Scholar 

  276. Boulpep EL, Seely JF. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol 1971; 221: 1084–96.

    Google Scholar 

  277. Rabito CA, Tchao R, Valentich J, Leighton J. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J Membrane Biol 1978; 43: 351–65.

    Article  CAS  Google Scholar 

  278. Shashby DM, Winter M, Shashby SA. Oxidants and conductance of cultured epithelial cell monolayer: inositol phospholipid hydrolysis. Am J Physiol 1988; 255: C781–8.

    Google Scholar 

  279. Mullin JM, McGinn MT. Effects of diaclyglycerols on LLC-PK1 renal epithelia: similarity to phorbol ester tumor promoters. J Cell Physiol 1988; 134: 357–66.

    Article  PubMed  CAS  Google Scholar 

  280. Prozialeck WC, Niewenhuis RJ. Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 1991; 107: 81–97.

    Article  PubMed  CAS  Google Scholar 

  281. Scott JA, Fischman AJ, Khaw BA, Homcy CJ, Rabito CA. Free radical-mediated membrane depolarization in renal and cardiac cells. Biochim Biophys Acta 1987; 899: 76–82.

    Article  PubMed  CAS  Google Scholar 

  282. Scott JA, Khaw BA, Homcy CJ, Rabito CA. Oxygen radicals alter cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells. Biochim Biophys Acta 1987; 897: 25–32.

    Article  PubMed  CAS  Google Scholar 

  283. Jungwirth A, Ritter M, Paulmichl M, Lang F. Activation of cell membrane potassium conductance by mercury in cultured renal epitheloid (MDCK) cells. J Cell Physiol 1991; 146: 25–33.

    Article  PubMed  CAS  Google Scholar 

  284. Merot J, Bidet M, Le Maout S, Tauc M, Poujeol P. Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta 1989; 978: 134–44.

    Article  PubMed  CAS  Google Scholar 

  285. Friedlander G, Le Grimellec C, Amiel C. Increase in membrane fluidity modulates sodium-coupled uptakes and cyclic AMP synthesis by proximal tubular cells in primary cultures. Biochim Biophys Acta 1990; 1022: 1–7.

    Article  PubMed  CAS  Google Scholar 

  286. Handler JS, Moran A. Regulation of expression of the sodium-coupled hexose transporter in cultured LLC-PK1 epithelia. Pflügers Arch 1985; 405: S163–6.

    Article  Google Scholar 

  287. Humes HD. Role of calcium in pathogenesis of acute renal failure. Am J Physiol 1986; 250: F579–89.

    Google Scholar 

  288. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. TIPS 1989; 10: 281–5.

    PubMed  CAS  Google Scholar 

  289. Wilson PD, Schrier RW Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int 1986; 29: 1172–9.

    Article  PubMed  CAS  Google Scholar 

  290. Bonventre JV, Cheung JY. Cytosolic free calcium concentration in cultured renal epithelial cells. Am J Physiol 1986; 250: F329–38.

    Google Scholar 

  291. Holohan PD, Sokol PP, Ross CR, Coulson R, Trimble ME, Laska DA, Williams PD. Gentamicin-induced inreases in cytosolic calcium in pig kidney cells (LLC-PK1). J Pharmacol Exp Ther 1988; 247: 349–54.

    PubMed  CAS  Google Scholar 

  292. Trump BF, Berezesky IK, Eiliget KA, Smith MA, Phelps PC. Nephrotoxicity in vitro: role of ion deregulation in signal transduction following injury — studies utilizing digital imaging fluorescence microscopy. Toxicol In Vitro 1990; 4: 40914.

    Google Scholar 

  293. Swann JD, Ulrich R, Acosta D. Lack of changes in cytosolic ionized calcium in primary cultures of rat kidney cortical cells exposed to cytotoxic concentrations of gentamicin. Toxicol Appl Pharmacol 1990; 106: 38–47.

    Article  PubMed  CAS  Google Scholar 

  294. Balaban RS. The application of nuclear magnetic resonance to the study of cellular physiology. Am J Physiol 1984; 246: C10–9.

    Google Scholar 

  295. Winkel C, Jans AWH. A 13C-NMR study on metabolic changes in proximal convoluted tubule cells induced by cadmium. Toxicol Lett 1990; 53: 173–4.

    Article  PubMed  CAS  Google Scholar 

  296. von Bonsdorff CH, Fuller SD, Simons K. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J 1985; 4: 2781–92.

    Google Scholar 

  297. Pfaller W, Gstraunthaler G, Willinger CC. Morphology of renal tubular damage from nephrotoxins. Toxicol Lett 1990; 53: 39–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pfaller, W. et al. (1998). Experimental models. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Verpooten, G.A. (eds) Clinical Nephrotoxins. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9088-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9088-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-9090-7

  • Online ISBN: 978-94-015-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics