Skip to main content
Log in

Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10−4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10−4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10−4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, J.J., Trimm, J.L., Weden, L., Salama, G. 1983. Heavy metals induce rapid Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal muscle.Proc. Natl. Acad. Sci. USA 80:1526–1530

    Google Scholar 

  • Adunyah, S.E., Dean, W.L. 1986. Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol triphosphate-induced Ca2+ release from human platelet membranes.J. Biol. Chem. 261:13071–13075

    Google Scholar 

  • Ash, G.R., Bygrave, F.L. 1975. Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver.FEBS Lett. 78:166–168

    Google Scholar 

  • Avison, M.J., Gullans, S.R., Ogino, T., Giebisch, G. 1988. Na+ and K+ fluxes stimulated by Na+-coupled glucose transport: Evidence for a Ba2+-insensitive K+ efflux pathway in rabbit proximal tubules.J. Membrane Biol. 10:197–205

    Google Scholar 

  • Avison, M.J., Gullans, S.R., Ogino, T., Giebisch, G., Shulman, R.J. 1987.Am. J. Physiol. 253:C126-C136

    Google Scholar 

  • Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule.J. Physiol. (London) 326:49–63

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Biagi, B., Sohtell, M., Giebisch, G. 1981. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686

    Google Scholar 

  • Brady, H.R., Kone, B.C., Gullans, S.R. 1989. Extracellular Na+ electrode for monitoring net Na+ flux in cell suspensions.Am. J. Physiol. 256:C110-C1110

    Google Scholar 

  • Cassola, A.C., Mollenhauer, M., Fromter, E. 1983. The intracellular chloride activity of rat kidney proximal tubular cells.Pfluegers Arch. 399:259–265

    Google Scholar 

  • Clarkson, T.W., O'Toole, S.R. 1964. Measurement of short-circuit current and ion transport across the ileum.Am. J. Physiol. 206:658–668

    Google Scholar 

  • Cleland, W.W. 1964. Dithiothreitol, a new protective reagent for SH groups.Biochemistry 3:480–482

    Google Scholar 

  • Curran, P.F., 1972. Effect of silver ion on permeability properties of frog skin.Biochim. Biophys. Acta 288:90–97

    Google Scholar 

  • Eveloff, J., Warnock, D.G. 1987. K-Cl transport systems in rabbit renal basolateral membrane vesicles.Am. J. Physiol. 252:F883-F889

    Google Scholar 

  • Ferriera, K.T.G. 1970. The effect of Cu2+ on isolated frog skin.Biochim. Biophys. Acta 203:555–567

    Google Scholar 

  • Gillis, K., Gee, G., Falke, L., Misler, S. 1987. Opposite actions of two structurally similar sulfonamides on an ATP sensitive K+ channel in adult pancreatic B-cells and RINm5F insulinoma cells.Biophys. J. 51:53a

    Google Scholar 

  • Gogelein, H., Greger, R. 1984. Single channel recordings from basolateral and apical membranes of renal proximal tubules.Pfluegers Arch. 401:424–426

    Google Scholar 

  • Gritzka, T.L., Trump, B.F. 1968. Renal tubular lesions caused by mercuric chloride.Am. J. Pathol. 10:271–281

    Google Scholar 

  • Gullans, S.R., Kone, B.C., Avison, M.J., Giebisch, G. 1988. Succinate alters respiration, membrane potential, and intracellular K+ in proximal tubule.Am. J. Physiol. 255:F1170-F1177

    Google Scholar 

  • Gurd, F.R.N., Wilcox, P.E. 1956. Complex formation between metallic cations and proteins, peptides and amino acids.Adv. Protein Chem. 11:311–427

    Google Scholar 

  • Harris, S.I., Balaban, R.S., Barrett, L., Mandel, L.J. 1981. Mitochondrial respiratory capacity and Na+-and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell.J. Biol. Chem. 256:1019–1028

    Google Scholar 

  • Harris, S.I., Patton, L., Barrett, L., Mandel, L.J. 1982. (Na+, K+)-ATPase kinetics within the intact renal cell.J. Biol. Chem. 257:6996–7002

    Google Scholar 

  • Humes, H.D., Weinberg, J.M. 1986. Toxic nephropathies.In: The Kidney. B.M. Brenner and F.C. Rector, Jr., editors. Vol. II, pp. 1491–1532. W.B. Saunders, Philadelphia

    Google Scholar 

  • Jungwirth, A., Paulmichl, M., Lang, F. 1989. Effects of heavy metals on electrical properties of Madin Darby canine kidney cells.Kidney Int. 35:410 (Abstr.)

    Google Scholar 

  • Kawahara, K., Hunter, M., Giebisch, G. 1987. Potassium channels inNecturus proximal tubule.Am. J. Physiol. 253:F488-F494

    Google Scholar 

  • Klyce, S.D., Marshall, W.S. 1982. Effects of Ag+ on ion transport by the corneal epithelium of the rabbit.J. Membrane Biol. 66:133–144

    Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    Google Scholar 

  • Kone, B.C., Kaleta, M., Gullans, S.R. 1988. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: Reversal by thiol reagents.J. Membrane Biol. 10:11–19, 1988

    Google Scholar 

  • Lauf, P.K. 1988. Thiol-dependent K: Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide.J. Membrane Biol. 10:179–188

    Google Scholar 

  • Lipman, R.D., Harris, R.C., Lechene, C. 1987. High chloride permeability of rat proximal tubule cells (RPTC) in primary culture.Kidney Int. 31:439a

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.L. 1951. Protein measurement with the Folin reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Misler, S. 1987. Tolbutamide inhibits an ATP sensitive K+ channel in cardiac myocytes.Biophys. J. 51:53 (Abstr.)

    Google Scholar 

  • Murphy, E., Mandel, L.J. 1982. Cytosolic free calcium levels in rabbit proximal kidney tubules.Am. J. Physiol. 242:C124-C128

    Google Scholar 

  • Passow, H., Rothstein, A., Clarkson, T.W. 1961. The general pharmacology of the heavy metals.Pharmacol. Rev. 13:185–224

    Google Scholar 

  • Reugg, C.W., Gandolfi, A.J., Nagle, R.B., Brendel, K. 1987. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.Toxicol. Appl. Pharmacol. 90:261–273

    Google Scholar 

  • Rifkin, R.J. 1965. In vitro inhibition of Na+−K+ and Mg2+-ATPase by mono, di and trivalent cations.Proc. Soc. Exp. Biol. Med. 120:802–804

    Google Scholar 

  • Sasaki, S., Ishibashi, K., Yoshiyama, N., Shiigai, T. 1988. KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules.J. Clin. Invest. 81:194–199

    Google Scholar 

  • Smith, M.W., Ambudkar, I.S., Phelps, P.C., Regec, A.L., Trump, B.F. 1987. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells.Biochim. Biophys. Acta 931:130–142

    Google Scholar 

  • Soltoff, S.P., Mandel, L.J. 1986. Potassium transport in the rabbit renal proximal tubule: Effects of barium, ouabain, valinomycin, and other ionophores.J. Membrane Biol. 94:153–161

    Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-chloromercuribenzene sulfonate.Biochim. Biophys. Acta 455:272–276

    Google Scholar 

  • Van Driessche, W. 1987. Ca2+ channels in the apical membrane of the toad urinary bladder.Pfluegers Arch. 410:243–249

    Google Scholar 

  • Walser, M. 1970. Calcium transport in toad bladder: Permeability to calcium ions.Am. J. Physiol. 218:582–589

    Google Scholar 

  • Weinberg, J.M., Harding, P.G., Humes, H.D. 1982. Mitochondrial bioenergetics during the initiation of mercuric chlorideinduced renal injury. I. Direct effects of in vitro mercuric chloride on renal cortical mitochondrial function.J. Biol. Chem. 257:60–67

    Google Scholar 

  • Zalme, R.C., McDowell, E.M., Nagle, R.B., McNeil, J.S., Flamenbaum, W., Trump, B.F. 1976. Studies on the pathophysiology of acute renal failure. II. A histochemical study of the proximal tubule of the rat following administration of mercuric chloride.Virchows Arch. B 22:197–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kone, B.C., Brenner, R.M. & Gullans, S.R. Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule. J. Membrain Biol. 113, 1–12 (1990). https://doi.org/10.1007/BF01869600

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869600

Key Words

Navigation