Skip to main content
Log in

Subcellular localization of celiptium-induced peroxidative damage in rat renal cortex

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Celiptium (N2-methyl-9-hydroxyellipticinium) is an antitumor agent of the ellipticine series. We have shown a dose-dependent nephrotoxicity in rats and demonstrated a lipid overload in proximal tubular cells (unsaturated free fatty acid accumulation). We have also shown an increase in thiobarbituric acid reactive substances (TBARS), namely the 4-hydroxyalkenals, that is paralleled by a decrease in phosphatidylethanolamine in rat kidney cortex. In the present study, peroxidative damage was localized in mitochondria, microsomal and brush-border membranes of kidney cortex. Female Wistar rats were injected with a single i. v. dose of 20 mg/kg celiptium and sacrificed on day 8. Subcellular fractionation studies showed that celiptium induced alterations: 1) in mitochondria (slight increase in aldehydes), 2) in microsomal membranes (increase in free fatty acids (FFA) with in particular rises in oleic (18∶1) and linoleic (18∶2) acids), 3) in brush-border membranes or BBM (decrease in protein and phospholipid contents); residual membranes showed an increase in oleic and linoleic acids and a decrease in the polyunsaturated fatty acids, arachidonic (20∶4) and docosahexaenoic (22∶6) acids, 4) in cytosol (increase in FFA and TBARS content). Thus, celiptium induces peroxidative damage in kidneys through lipid abnormalities which predominantly occur in brush-border membranes and consist of an increase in free fatty acids and aldehydes in cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARF:

acute renal failure

BBM:

brush-border membranes

TLC:

thin layer chromatography

HPTLC:

high performance thin layer chromatography

PC:

phosphatidylcholine

PE:

phosphatidyl-ethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

SPH:

sphingomyelin

FFA:

free fatty acids

TBARS:

thiobarbituric acid reactive substances

MDA:

malonaldehyde

NAG:

N-acetyl-B-d-glucosaminidase

γ-GT:

γ-glutamyl-transpeptidase

AAP:

alanine aminopeptidase

PLA2 :

phospholipase A2

References

  • Auclair C, Hyland K, Paoletti C (1983) Autoxidation of the antitumor drug 9-hydroxyellipticine and its derivatives. J Med Chem 26: 1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234: 466–468

    CAS  PubMed  Google Scholar 

  • Beaufay H, Amar-Costesec A, Thines-Sempoux D, Wibo M, Robbi M, Berthet J (1974) Analytical study of microsomes and isolated subcellular membranes from rat liver: I. Biochemical methods. J Cell Biol 61: 188–200

    CAS  Google Scholar 

  • Bindoli A (1988) Lipid peroxidation in mitochondria. J Free Radic Biol Med 5: 247–261

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. J Biochem Physiol 37: 911–917

    CAS  Google Scholar 

  • Cooperstein SJ, Lazarow A (1951) A microspectrometric method for the determination of cytochrome oxidase. J Biol Chem 189: 665–670

    CAS  PubMed  Google Scholar 

  • Dadoun C, Raguenez-Viotte G (1990) Celiptium induced nephrotoxicity and lipid peroxidation in rat renal cortex. Cancer Chemother Pharmacol 27: 178–186

    Article  CAS  PubMed  Google Scholar 

  • Evers C, Haase W, Murer H, Kinner R (1978) Properties of brush-border vesicles isolated from rat kidney cortex by calcium precipitation. Membr Biochem 1: 203–219

    CAS  PubMed  Google Scholar 

  • Gstraunthaler G, Pfaller W, Kotanko P (1983) Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure. Biochem Pharmacol 32: 2969–2972

    Article  CAS  PubMed  Google Scholar 

  • Gut J, Kawato S, Charry RJ, Winterthaler KH, Ritcher C (1985) Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes. Biochim Biophys Acta 817: 217–228

    CAS  PubMed  Google Scholar 

  • Haest CWM, Deuticke B (1976) Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 436: 346–365

    Google Scholar 

  • Haest CWM, Plasa G, Kamp D, Deuticke B (1978) Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 509: 21–32

    CAS  PubMed  Google Scholar 

  • Hjelle JT, Morin JP, Trouet A (1981) Analytical cell fractionation of isolated rabbit renal proximal tubules. Kidney Int 20: 71–77

    CAS  PubMed  Google Scholar 

  • Jain SK, Hochstein P (1980) Polymerization of membrane components in aging red blood cells. Biochem Biophys Res Commun 92: 247–254

    Article  CAS  PubMed  Google Scholar 

  • Jain SK (1984) The accumulation of malondialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. J Biol Chem 259: 3391–3394

    CAS  PubMed  Google Scholar 

  • Joannidis M, Bonn G, Pfaller W (1989) Lipid peroxidation. An initial event in experimental acute failure. Renal Physiol Biochem 12: 47–55

    CAS  Google Scholar 

  • Juret P, Heron JF, Couette JE, Delozier T, Le Talaer JY (1982) Hydroxy-9-methyl-2-ellipticinium for osseous metastases from breast cancer: a 5 years experience. Cancer Treat Rep 66: 1909–1916

    CAS  PubMed  Google Scholar 

  • Knauss TC, Weinberg JM, Humes DH (1983) Alterations in renal cortical phospholipid content induced by gentamicin: time course, specificity and subcellular localization. Am J Physiol 244: F535-F546

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farrac C, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  • Maftouh M, Amiar Y, Picard-Fraire C (1985) Metabolism of the antitumor drug N2-methyl-9-hydroxyellipticinium acetate in isolated rat kidney cells. Biochem Pharmacol 34: 427–428

    Article  CAS  Google Scholar 

  • Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M (1984) Lipid alterations induced by renal ischemia: pathogenetic factor membrane damage. Kidney Int 26: 153–161

    CAS  PubMed  Google Scholar 

  • Monsarrat B, Maftouh M, Bernadou J, Armand JP, Paoletti C, Meunier B (1987) Human and rat urinary metabolites of the hydroxy-methylellipticinium. Identification of cysteine conjugates supporting the “biooxidative alkylation” hypothesis. J Pharm Biomed Anal 5: 341–351

    Article  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluorid-methanol. J Lipid Res 5: 600–608

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358

    Article  CAS  PubMed  Google Scholar 

  • Ohyashiki T, Ohtsuka T, Mohri T (1988) Increase of the molecular rigidity of the protein confirmation in the intestinal brush-border membranes by lipid peroxidation. Biochim Biophys Acta 939: 383–392

    CAS  PubMed  Google Scholar 

  • Paoletti C, Le Pecq JB, Dat-Xuong N, Juret P, Garnier H, Amiel JL, Rouesse J (1980) Antitumor activity, pharmacology, and toxicity of ellipticines (elliptinium) and 9-hydroxy derivatives: preliminary clinical trials of 2-methyl-9-hydroxyellipticinium (NSC-264-137). Recent Results Cancer Res 74: 107–123

    CAS  PubMed  Google Scholar 

  • Parker L, Utsuni K, Mustafa MG (1966) Oscillatory state of mitochondria. I. Electron and energy transfer pathways. Arch Biochem Biophys 117: 381–393

    Google Scholar 

  • Pfaller W (1982) Structure function correlation on the rat kidney. Adv Anat Embryol Cell Biol 70: 1–101

    CAS  PubMed  Google Scholar 

  • Post RA, Sen AK (1967) Sodium and potassium-stimulated ATPase. Methods Enzymol 10: 762–768

    CAS  Google Scholar 

  • Pugh D, Leaback EA, Walker PG (1957) Studies on glucosaminidases: N-acetyl-B-D-glucosaminidase in rat kidney. Biochem J 65: 464–468

    CAS  PubMed  Google Scholar 

  • Raguenez-Viotte G, Dadoun C, Buchet P, Ducastelle T, Fillastre JP (1988) Renal toxicity of the antitumor drug N2-methyl-9-hydroxyellipticinium acetate in the Wistar rat. Arch Toxicol 61: 282–291

    CAS  PubMed  Google Scholar 

  • Raguenez-Viotte G, Dieber-Rotheneder M, Dadoun C, Fillastre JP, Esterbauer H (1990) Evidence for 4-hydroxyalkenals in rat renal cortex peroxidized by N2-methyl-9-hydroxyellipticinium acetate or celiptium. Biochim Biophys Acta 1046: 294–300

    CAS  PubMed  Google Scholar 

  • Rice-Evans C, Hochstein P (1981) Alterations in erythrocyte membrane fluidity by phenylhydrazine-induced peroxidation of lipid. Biochem Biophys Res Commun 100: 1537–1542

    CAS  PubMed  Google Scholar 

  • Sevanian A, Kim E (1985) Phospholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Radic Biol Med 1: 263–271

    CAS  PubMed  Google Scholar 

  • Sevanian A, Muakkassah-Kelly SF, Montestruque S (1983) The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch Biochem Biophys 223: 441–452

    Article  CAS  PubMed  Google Scholar 

  • Skipski VP, Peterson RF, Barclay M (1964) Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 90: 374–378

    CAS  PubMed  Google Scholar 

  • Tan KH, Meyer DJ, Belin J, Ketterer B (1984) Inhibition of microsomal lipid peroxidation by glutathione and glutathione-transferases b and AA (role of endogenous phospholipase A2). Biochem J 220: 243–252

    CAS  PubMed  Google Scholar 

  • Van Duijn G, Verkleij AJ, Kruijff B (1984) Influence of phospholipid peroxidation on the phase behavior of phosphatidylcholine and phosphatidyethanolamine in aqueous dispersions. Biochemistry 23: 4969–4977

    PubMed  Google Scholar 

  • Van Kuijk FJGM, Sevanian A, Handelman GJ, Dratz EA (1987) A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. TIBS 12: 31–34

    Google Scholar 

  • Vladimorov YA, Cheremisina ZP (1975) The effect of the lipid peroxidation on the respiratory control in rat liver mitochondria. Studia Biophys 49: 161–175

    Google Scholar 

  • Vladimorov YA, Olenev VI, Suslova JB, Cheremisina ZP (1980) Lipid peroxidation in mitochondrial membranes. Adv Lipid Res 17: 173–249

    Google Scholar 

  • Venien C, Le Grimellec C (1988a) Phospholipid asymmetry in renal brush-border membranes. Biochim Biophys Acta 942: 159–168

    CAS  PubMed  Google Scholar 

  • Venien C, Le Grimellec C (1988b) The involvement of cytoskeletal proteins in the maintenance of phospholipid topology in renal brush-border membranes. Biochim Biophys Acta 946: 307–314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raguenez-Viotte, G., Thomas, N. & Fillastre, J.P. Subcellular localization of celiptium-induced peroxidative damage in rat renal cortex. Arch Toxicol 65, 244–251 (1991). https://doi.org/10.1007/BF02307316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02307316

Key words

Navigation