Skip to main content
Log in

Tissue distribution of Neutrophils in postischemic acute renal failure

  • Original Articles
  • Published:
Virchows Archiv B

Summary

Polymorphonuclear neutrophil granulocytes (PMNs) seem to participate in the pathogenesis of renal ischemic reperfusion injury. The kidneys from male Sprague Dawley rats were immersion-fixed after 45 min of renal artery clamping followed by reperfusion for 0, 5, 20, and 120 min, respectively. The tissue distribution of PMNs in the kidneys was studied histochemically using naphthol AS-D chloroacetate esterase as a specific marker for these cells. Neutrophil counts per unit sectional area were obtained for renal cortex, outer and inner medulla. In the cortex separate intraglomerular and peritubular counts, and in the outer medulla separate outer and inner stripe counts were made. After 120 min of reperfusion the total renal PMN counts were 488 ±62 (n = 4) compared with 54 ±4 (n = 4) per cm2 in nonischemic controls. Within 120 min of reperfusion PMN counts increased by a factor of 8 in the cortex, of 12 in the outer medulla and of 14 in the inner medulla, compared with controls. The ratio of intraglomerular against peritubular PMN counts was approximately 2 in controls, but 0.5 after a 120-min reperfusion interval. The outer stripe of the outer medulla contained only a small number of PMNs whereas PMN counts of 923 ±197 (n = 4) per cm2 were found in the inner stripe after 120 min reperfusion. Interestingly, there was a marked increase in PMNs in the inner stripe during the first 5 min of reperfusion but no extravasation of PMNs was observed. Taken together, these data provide the first evidence that PMNs accumulate particularly within peritubular capillaries in the cortex and within the inner stripe of the outer medulla. This distribution pattern is consistent with the hypothesis that PMN-augmented cell injury occurs in the early phase of postischemic acute renal failure. In addition the steady increase in PMNs during reperfusion may further contribute to impaired renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AndreoliSP, McAteer JA, Mallett C (1990) Reactive oxygen mole-cule-mediated injury in endothelial and renal tubular epithelial cells in vitro. Kidney Int 38:785–794

    Article  PubMed  CAS  Google Scholar 

  • BaggioliniM, Dewald B (1985) The Neutrophil. Int Archs Allergy Appl Immunol 76:[Suppl 1] 13–20

    CAS  Google Scholar 

  • Bayati A, Christofferson R, Källskog Ö, Wolgast M (1990) Mecha-nism of erythrocyte trapping in ischemic acute renal failure. Acta Physiol Scand 138:13–23

    PubMed  CAS  Google Scholar 

  • Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    PubMed  CAS  Google Scholar 

  • Davis BJ, Ornstein L (1959) High resolution enzyme localization with a new diazo reagent, “hexazonium pararosaniline”. J Histochem Cytochem 7:297–298

    Google Scholar 

  • DeMay JG, Vanhoutte PM (1982) Heterogeneous behaviour of the canine arterial and venous wall. Importance of endothelium. Circ Res 51:439–447

    Google Scholar 

  • Engler RL, Schmid-Schönbein GW, Pavelec RS (1983) Leucocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111:98–111

    PubMed  CAS  Google Scholar 

  • Gräser T, Vanhoutte PM (1991) Hypoxic contraction of canine coronary arteries: role of endothelium and cGMP. Am J Phys-iol 261:H1769-H1777

    Google Scholar 

  • Hellberg POA, Källskog TÖK (1989) Neutrophil-mediated post-ischemic tubular leakage in the rat kidney. Kidney Int 36:555–561

    Article  PubMed  CAS  Google Scholar 

  • Hellberg POA, Källskog ÖT, Öjteg G, Wolgast M (1990)a Peritu-bular capillary permeability and intravascular RBC aggregation after ischemia: effects of neutrophils. Am J Physiol 258: Fl018-F1025

    Google Scholar 

  • Hellberg POA, Bayati A, Källskog Ö, Wolgast M (1990)b Red cell trapping after ischemia and long-term kidney damage. In-fluence of hematocrit. Kidney Int 37:1240–1247

    Article  PubMed  CAS  Google Scholar 

  • Hellberg POA, Källskog Ö, Wolgast M (1990)c Nephron function in the early phase of ischemic renal failure. Significance of erythrocyte trapping. Kidney Int 38:432–439

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN (1987) Role of neutrophils in ischemia-reperfu-sion-induced microvascular injury. Am J Physiol 253:H699-H703

    PubMed  CAS  Google Scholar 

  • Jaeschke H, Farhood A, Smith CW (1990) Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J 4:3355–3359

    PubMed  CAS  Google Scholar 

  • Joannidis M, Bonn G, Pfaller W (1989) Lipid peroxidation -an initial event in experimental acute renal failure. Renal Physiol Biochem 12:47–55

    PubMed  CAS  Google Scholar 

  • Klausner JM, Paterson IS, Goldman G, Kobzik L, Rodzen C, Lawrence R, Valeri CR, Shepro D, Hechtman HB (1989) Post-ischemic renal injury is mediated by neutrophils and leuko-trienes. Am J Physiol 256:F794-F802

    PubMed  CAS  Google Scholar 

  • Korthius RJ, Grisham MB, Granger DN (1988) Leucocyte deple-tion attenuates vascular injury in postischemic skeletal muscle. Am J Physiol 254:H823-H827

    Google Scholar 

  • Leder LD (1964) Über die selektive fermentcytochemische Darstel-lung von neutrophilen myeloischen Zellen und Gewebsmastzel-len im Paraffinschnitt. Klin Wochenschr 42:553

    Article  PubMed  CAS  Google Scholar 

  • Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255:F728-F735

    PubMed  CAS  Google Scholar 

  • Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfu-sion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293

    Article  PubMed  CAS  Google Scholar 

  • Mason J (1986) The pathophysiology of ischemic acute renal fail-ure. Renal Physiol Biochem 9:129–147

    CAS  Google Scholar 

  • McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bain-ton DF (1989) GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84:92–99

    Article  PubMed  CAS  Google Scholar 

  • McEver RP (1991) GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Bio-chem 45:156–161

    Article  CAS  Google Scholar 

  • Moloney WC, McPherson K, Fliegelman L (1960) Esterase activity in leucocytes demonstrated by the use of naphthol AS-D chloro-acetate substrate. J Histochem Cytochem 8:200–207

    PubMed  CAS  Google Scholar 

  • Pfaller W, Rittinger M (1980): Quantitative morphology of the rat kidney. Int J Biochem 12:17–22

    Article  PubMed  CAS  Google Scholar 

  • Pfaller W (1982) Structure function correlation on rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv Anat Embryol Cell Biol 70:1–106

    PubMed  CAS  Google Scholar 

  • Rasmussen SN (1973) Intrarenal red cell and plasma volumes in the non-diuretic rat. Determination by means of51Cr-labelled red cells and125I-γM-immunoglobulin. Pflügers Arch 342:61–72

    Article  PubMed  CAS  Google Scholar 

  • Rindler-Ludwig R, Schmalzl F, Braunsteiner H (1974) Esterases in human neutrophil granulocytes: Evidence for their protease nature. Br J Haematol 27:57–64

    Article  PubMed  CAS  Google Scholar 

  • Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork A, Lucce-si BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    PubMed  CAS  Google Scholar 

  • Schlondorff D, Neuwirth R (1986) Platelet activating factor and the kidney. Am J Physiol 251:F1-F11

    CAS  Google Scholar 

  • Sussman MS, Bulkley GB (1990) Oxygen-derived free radicals in reperfusion injury. Meth Enzymol 186:711–723

    Article  PubMed  CAS  Google Scholar 

  • Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    PubMed  CAS  Google Scholar 

  • Yoshioka T, Ichikawa I (1989) Glomerular dysfunction induced by polymorphonuclear leucocyte-derived reactive oxygen spe-cies. Am J Physiol 257: F53-F59

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willinger, C.C., Schramek, H., Pfaller, K. et al. Tissue distribution of Neutrophils in postischemic acute renal failure. Virchows Archiv B Cell Pathol 62, 237–243 (1992). https://doi.org/10.1007/BF02899687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899687

Key words

Navigation