Skip to main content
Log in

An in vitro approach to the study of target organ toxicity of drugs and chemicals

  • Toxicology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A major goal of our laboratory has been the development of primary culture systems that retain differentiated fucntions and responses characteristic of intact tissues in vivo. Specifically, we have developed cellular models of primary cultures of rat heart, liver, and kidney cells to explore the mechanisms by which drugs or chemicals may be toxic to key organs of the body and to develop new techniques by which xenobiotics may be evaluated or identified as potential toxicants to living systems. The purpose of this paper is to describe our rationale and approach to the study of target organ toxicology with in vitro cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, D.; Anuforo, D. Cytotoxicity of caffeine in cultured heart cells. Toxicology 6:225–233; 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Acosta, D.; Anuforo, D. C.; Smith, R. V. Cytotoxicity of acetaminophen and papaverine in primary cultures of rat hepatocytes. Toxicol. Appl. Pharmacol. 53:306–314; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Acosta, D.; Anuforo, D. C.; Smith, R. V. Primary monolayer cultures of postnatal rat liver cells with extended differentiated functions. In Vitro 14:428–436; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Acosta, D.; Chappell, R. Cardiotoxicity of diazepam in cultured heart cells. Toxicology 8:311–317; 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Acosta, D.; Combs, A. B.; Ramos, K. Attenuation by antioxidants of Na+/K+ ATPase inhibition by toxic concentrations of isoproterenol in cultured rat myocardial cells. J. Mol. Cell. Cardiol. 16:281–284; 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Acosta, D.; Mitchell, D. B. Metabolic activation and cytotoxicity of cyclophosphamide in primary cultures of postnatal rat hepatocytes. Biochem. Pharmacol. 30:3225–3230; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Acosta, D.; Ramos, K. Li-Goldman, C. P. Cellular injury of primary cultures of rat myocytes incubated in calcium-free medium followed by recovery in calcium. In Vitro 19:141–144; 1983.

    PubMed  CAS  Google Scholar 

  8. Acosta, D.; Ramos, K.; Li-Goldman, C. P. Cell injury of cultured rat myocardial cells after reoxygenation of hypoxic cultures in the presence and absence of calcium. In Vitro 20:642–646; 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Acosta, D.; Li, C. P. Actions of extracellular acidosis on primary cultures of rat myocardial cells deprived of oxygen and glucose. J. Mol. Cell. Cardiol. 12:1459–1463; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Acosta, D.; Mitchell, D. B. Subcellular localization of hepatocyte injury due to metabolic activation of acetaminophen. Toxicologist 3:113; 1983.

    Google Scholar 

  11. Acosta, D.; Sorensen, E. M. B. Role of calcium in cytotoxic injury of cultured hepatocytes. Ann. NY Acad. Sci. 407:78–92; 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Acosta, D.; Puckett, M. Ischemic myocardial injury in cultured heart cells: preliminary observations on morphology and beating activity. In Vitro 13:818–823; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Acosta, D.; Puckett, M.; McMillin, R. Ischemic myocardial injury in cultured heart cells: leakage of cytoplasmic enzymes from injured cells. In Vitro 14:728–732; 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Acosta, D.; Puckett, M.; McMillin, R. Ischemic myocardial injury in cultured heart cells:in situ lysosomal damage. Experientia 34:1388–1389; 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Acosta, D.; Ramos, K. Cardiotoxicity of tricyclic antidepressants in primary cultures of rat myocardial cells. J. Toxicol. Environ. Health 14:137–143; 1984.

    PubMed  CAS  Google Scholar 

  16. Acosta, D.; Wenzel, D. G. A permeability test for the study of mitochondrial injury inin vitro cultured heart muscle and endothelioid cells. Histochem. J. 7:45–56; 1975.

    Article  PubMed  CAS  Google Scholar 

  17. Acosta, D.; Wenzel, D. G. Injury produced by free fatty acids to lysosomes and mitochrondria in cultured heart muscle and endothelial cells. Atherosclerosis 20:417–426; 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Anuforo, D. C.; Acosta, D.; Smith, R. V. Hepatotoxicity studies with primary cultures of rat liver cells. In Vitro 14:981–988; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Balazs, T.; Ferrans, V. J. Cardiac lesions induced by chemicals. Environ. Hlth. Perspect. 26:181–191; 1978.

    Article  CAS  Google Scholar 

  20. Barza, M. Thenephrotoxicity of cephalosporins: an overview. J. Infect. Dis. 137:560–573; 1978.

    Google Scholar 

  21. Beeuwkes, R.; Ichikawa, I.; Brenner, B. M. The renal circulations. In: Brenner, B. M.; Rector, F. C., eds. The kidney, vol. 1. Philadelphia: W. B. Saunders; 1981:267.

    Google Scholar 

  22. Belleman, P. Primary monolayer culture of liver parenchymal cells and kidney cortical tubules as a useful new model for biochemical pharmacology and experimental toxicology. Arch. Toxicol. 44:63–84; 1980.

    Article  Google Scholar 

  23. Bhuyan, B. K.; Loughman, B. E.; Fraser, T. J., et al. Comparison of different methods of determining cell viability after exposure to cytotoxic compounds. Exp. Cell Res. 97:275–280; 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Bonney, R. J. Adult liver parenchymal cells in primary culture: characteristics and cell recognition standards. In Vitro 10:130–142; 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Brenner, G. M.; Wenzel, D. G. Carbon monoxide and cultured rat heart cells. I. Inhibition of cell growth and maintenance of beating rate. Toxicol. Appl. Pharmacol. 23:251–262; 1972.

    Article  PubMed  CAS  Google Scholar 

  26. Chan, W. Y.; Rennert, O. M. Cadmium nephropathy. Ann. Clin. Lab. Sci. 11:229–238; 1981.

    PubMed  CAS  Google Scholar 

  27. Cherian, G. M. The synthesis of metallothionein and cellular adaptation to metal toxicity in primary rat kidney epithelial cell cultures. Toxicology 17:225–231; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Cohen, Y. Reactive metabolites and their implications for toxicology. Adv. Pharmacol. Ther. 9:1–25; 1980.

    Article  Google Scholar 

  29. Dallner, G.; Siekevitz, P.; Palade, G. E. Biogenesis of endoplasmic reticulum membranes. J. Cell Biol. 30:73–95; 1966.

    Article  PubMed  CAS  Google Scholar 

  30. FDA Drug Bulletin. Treatment IND for benoxaprofen. FDA Drug Bull. 13:4–5; 1983.

  31. Gilbert, S. F.; Migeon, B. R. D-Valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5:11–17; 1975.

    Article  PubMed  CAS  Google Scholar 

  32. Goodman, J.; Hochstein, P. Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem. Biophys. Res. Commun. 77:797–803; 1977.

    Article  PubMed  CAS  Google Scholar 

  33. Grisham, J. W.; Smith, G. J. Predictive and mechanistic evaluation of toxic responses in mammalian cell culture systems. Pharmacol. Rev. 36:151s-171s; 1984.

    PubMed  CAS  Google Scholar 

  34. Hirsch, G. H. Differential effects of nephrotoxic agents on renal transport and metabolism by use of in vitro techniques. Environ. Health Perspect. 15:89–99; 1976.

    Article  CAS  Google Scholar 

  35. Hook, J. B.; McCormack, K. M.; Kluwe, W. M. Biochemical mechanisms of nephrotoxicity. In: Hodgson, E.; Bend, J. R.; Philpott, R. M., eds. Reviews in biochemical toxicology, vol. 1. New York: Elsevier; 1979:53–78.

    Google Scholar 

  36. Hsu, B. Y.; McNamara, P. D.; Schlesinger, H.; et al. Ease of solubilization of liver marker enzymes in three preparations of rat renal brush border membranes. Enzyme 25:170–181; 1981.

    Google Scholar 

  37. Inamoto, H.; Ino, Y.; Inamoto, N.; et al. Effect of HgCl2 on rat kidney cells in primary culture. Lab. Invest. 34:489–494; 1976.

    PubMed  CAS  Google Scholar 

  38. Jones, A. L.; Mills, E. S. Ultrastructural concepts of drug metabolism. Am. J. Drug. Alcohol Abuse 1:111–122; 1974.

    PubMed  CAS  Google Scholar 

  39. Kluwe, W. M. Renal function tests as indicators of kidney injury in subacute toxicity studies. Toxicol. Appl. Pharmacol. 57:414–424; 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Laishes, B. A.; Williams, G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes. I. The effect of insulin. In Vitro 12:521–532; 1976.

    PubMed  CAS  Google Scholar 

  41. Laishes, B. A.; Williams, G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12:821–832; 1976.

    PubMed  CAS  Google Scholar 

  42. Leffert, H.; Paul, D. Serum dependent growth of primary cultured differentiated fetal rat hepatocytes in arginine-deficient medium. J. Cell. Physiol. 81:113–124; 1973.

    Article  PubMed  CAS  Google Scholar 

  43. Leslie, S. W.; Gad, S. C.; Acosta, D. Cytotoxicity of butylated hydroxytoluene and butylated hydroxyanisole in cultured heart cells. Toxicology 10:281–289; 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Lieberman, M.; Adam, W. J.; Bullock, P. N. The cultured heart cell: problems and prospects. Methods Cell Biol. 21A:187–203; 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Mattila, M. J.; Saarnivara, L. Amitriptyline toxicity. Lancet 2:1138; 1970.

    Article  PubMed  CAS  Google Scholar 

  46. Mazel, P.; Pessayre, D. Significance of metabolite-mediated toxicities in the safety evaluation of drugs and chemicals. Adv. Med. Toxicol. 1:207–343; 1976.

    Google Scholar 

  47. Mitchell, D. B.; Acosta, D. Evaluation of the cytoxicity of tricyclic antidepressants in primary cultures of rat hepatocytes. J. Toxicol. Environ. Health. 7:83–92; 1981.

    PubMed  CAS  Google Scholar 

  48. Mitchell, D. B.; Acosta, D. The effect of culture medium supplements on glutathione levels in primary cultures of postnatal rat hepatocytes. In Vitro 17:243; 1981.

    Google Scholar 

  49. Mitchell, J. R.; Jollow, D. J. Metabolic activation of drugs to toxic substances. Gastroenterology 68:392–410; 1975.

    PubMed  CAS  Google Scholar 

  50. Mitchell, J. R.; McMurtry, R. J.; Statham, C. N.; et al. Molecular basis for several drug-induced nephropathies. Am. J. Med. 62:518–526; 1977.

    Article  PubMed  CAS  Google Scholar 

  51. Mitchell, D. B.; Santone, K. S.; Acosta, D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J. Tiss. Cult. Methods 6:113–116; 1980.

    Article  CAS  Google Scholar 

  52. Moses, R. L.; Kasten, F. H. Ultrastructure of dissociated adult mammalian myocytes. J. Mol. Cell. Cardiol. 11:161–172; 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Nelson, K. F.; Acosta, D.; Bruckner, J. V. Long-term maintenance and induction of cytochrome P-450 in primary cultures of rat hepatocytes. Biochem. Pharmacol. 31:2211–2214; 1982.

    Article  PubMed  CAS  Google Scholar 

  54. Paine, A. J.; Legg, R. F. Apparent lack of correlation between the loss of cytochrome P-450 in hepatic parenchymal cell culture and the stimulation of haem oxygenase activity. Biochem. Biophys. Res. Commun. 81:672–679; 1978.

    Article  PubMed  CAS  Google Scholar 

  55. Park, M. K.; Sheridan, P. H.; Morgan, W. F. et al. Comparative inotropic responses of newborn and adult rabbit papillary muscles to isoproterenol and calcium. Dev. Pharmacol. Ther. 1:70–82; 1980.

    PubMed  CAS  Google Scholar 

  56. Peereboom-Stegeman, J. H. J.; Melet, J.; Peereboom, J. W. C.; et al. Influence of chronic cadmium intoxication on the alkaline phosphatase activity in liver and kidney. Toxicology 14:67–80; 1979.

    Article  PubMed  CAS  Google Scholar 

  57. Prescott, L. F. Assessment of nephrotoxicity. Br. J. Clin. Pharmacol. 13:303–311; 1982.

    PubMed  CAS  Google Scholar 

  58. Ramos, K.; Acosta, D. Prevention by L-ascorbic acid of isoproterenol-induced cardiotoxicity in primary cultures of rat myocytes. Toxicology 26:81–90; 1983.

    Article  PubMed  CAS  Google Scholar 

  59. Ramos, K.; Combs, A. B.; Acosta, D. Cytotoxicity of isoproterenol to cultured heart cells: effects of antioxidants on modifying membrane damage. Toxicol. Appl. Pharmacol. 70:317–323; 1983.

    Article  PubMed  CAS  Google Scholar 

  60. Ramos, K.; Combs, A. B.; Acosta, D. Role of calcium in isoproterenol cytotoxicity to cultured myocardial cells. Biochem. Pharmacol. 33:1989–1992; 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Salocks, C. B.; Hsieh, D. P.; Byard, J. L. Butylated hydroxytoluene pretreatment protects against cytotoxicity and reduces covalent binding of aflatoxin B, in primary hepatocyte cultures. Toxicol. Appl. Pharmacol. 59:331–345; 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Santone, K. S.; Acosta, D. Measurement of functional metabolic activity as a sensitive parameter of cytotoxicity in cultured hepatocytes. J Tissue Cult. Methods 7:137–142; 1982.

    Article  CAS  Google Scholar 

  63. Santone, K. S.; Acosta, D.; Bruckner, J. V. Cadmium toxicity in primary cultures of rat hepatocytes. J. Toxicol. Environ. Health 10:169–177; 1982.

    Article  PubMed  CAS  Google Scholar 

  64. Santone, K. S.; Acosta, D. The role of extracellular calcium in CCl4 injury of cultured rat hepatocytes. Toxicologist 4:133;1984.

    Google Scholar 

  65. Smith, M. A.; Acosta, D. Cephaloridine toxicity in primary cultures of rat kidney epithelial cells. Pharmacologist 25:272; 1983.

    Google Scholar 

  66. Smith, M. A.; Acosta, D. Effects of acetaminophen on primary cultures of rat kidney epithelial cells. Toxicologist 3:112; 1983.

    Google Scholar 

  67. Smith, M. A.; Acosta, D. Effects of HgCl2 on alkaline phosphatase activity, lactate dehydrogenase activity, and cell morphology in primary renal epithelial cell cultures. Pharmacologist 24:146; 1982.

    Google Scholar 

  68. Smith, M. A.; Acosta, D. Effect of cephaloridine on cellular ATP content and mitochondrial succinate dehydrogenase activity in primary cultures of rat kidney cortical epithelial cells. Toxicologist 4:31; 1984.

    Google Scholar 

  69. Smith, R. V.; Acosta, D.; Rosazza, J. P. Cellular and microbial models in the investigation of mammalian metabolism of xenobiotics. Adv. Biochem. Eng. 5:69–100; 1977.

    Article  CAS  Google Scholar 

  70. Sperelakis, N. Cultured heart cell reagregate model for studying cardiac toxicology. Environ. Health Perspect. 26:243–267; 1978.

    Article  PubMed  CAS  Google Scholar 

  71. Stammati, A. P.; Silano, V.; Zucco, F. Toxicology investigations with cell culture systems. Toxicology 20:90–153; 1981.

    Article  Google Scholar 

  72. Taggart, H. M.; Alderice, J. M. Fatal cholestatic jaundice in elderly patients taking benoxaprofen. Br. Med. J. 284:1372; 1982.

    Article  CAS  Google Scholar 

  73. Tardiff, R. G. In vitro methods of toxicity evaluation. Ann. Rev. Pharmacol. Toxicol. 18:357–369; 1978.

    Article  CAS  Google Scholar 

  74. Van Beezooijen, C. F. A.; Grell, T.; Knock, D. L. Bromosulfophthalein uptake by isolated liver parenchymal cells. Biochem. Biophys. Res. Commun. 69:354–361; 1976.

    Article  Google Scholar 

  75. Van Berkel, T. J. C.; Koster, J. F.; Hulsman, W. C. Distribution of L- and M-type pyruvate kinase between parenchymal and Kupffer cells of rat liver. Biochim. Biophys. Acta 276:425–429; 1972

    PubMed  Google Scholar 

  76. Veech, R. L.; Raijman, L.; Krebs, H. A. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem. J. 117:499–503; 1970.

    PubMed  CAS  Google Scholar 

  77. Vickery, H. M.; McCann D. S. Temperature and species differences in susceptibility of kidney cell cultures to mercury toxicity. In Vitro 14:312–316; 1978.

    Article  Google Scholar 

  78. Walker, M. J. A. Initial investigation into adrenaline accumulation and adrenergic responsiveness in cultured neonatal rat heart cells. Br. J. Pharmacol. 62:185–193; 1978.

    PubMed  CAS  Google Scholar 

  79. Walton, J.; Buckley, I. K. The lead poisoned cell: a fine structural study using culture kidney cells. Exp. Mol. Pathol. 27:167–182; 1977.

    Article  PubMed  CAS  Google Scholar 

  80. Welch, R. M. Toxicological implications of drug metabolism. Pharmacol. Rev. 30:457–467; 1979.

    Google Scholar 

  81. Wenzel, D. G.; Acosta, D. Permeability of lysosomes and mitochondria in cultured rat heart muscle and endothelial cells as affected by vitamin A, chlorpromazine, amphotericin B, and clofibrate. Res. Commun. Chem. Pathol. Pharmacol. 6:689–700; 1973.

    PubMed  CAS  Google Scholar 

  82. Wenzel, D. G.; Brenner, G. M. Carbon monoxide and cultured rat heart cells. II. Interaction of carbon monoxide and hypoxia on growth and contractile activity. Toxicol. Appl. Pharmacol. 24:256–265; 1973.

    Article  PubMed  CAS  Google Scholar 

  83. Wenzel, D. G.; Wheatley, J. W.; Byrd, G. D. Effects of nicotine on cultured heart cells. Toxicol. Appl. Pharmacol. 17:774–785; 1970.

    Article  PubMed  CAS  Google Scholar 

  84. Zimmerman, H. J. Hepatotoxicity. The adverse effects of drugs and other chemicals on the liver. New York: Appleton-Century-Crofts; 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, D., Sorensen, E.M.B., Anuforo, D.C. et al. An in vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell Dev Biol 21, 495–504 (1985). https://doi.org/10.1007/BF02620841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620841

Key words

Navigation