Skip to main content

Genome Mapping and Map Based Cloning

  • Chapter
Plant Breeding

Abstract

Genome mapping has emerged as a potential tool that provides the complete depiction of the genomes of plants and animals and thereby the means for their further manipulation. It involves elucidation of the nuclear genome of higher plants and animals as well as the smaller cytoplasmic genomes as chloroplasts and mitochondria. It involves basically linkage mapping employing molecular markers and using mainly segregating populations. First generation or primary genetic linkage maps have been constructed in several plant and animal systems, particularly those of fundamental or of economic interests. An array of markers have been used for such purposes, those included mainly isoenzyme, RFLP, RAPD, AFLP and SSR. The mostly used mapping populations included F2, recombinant inbred lines, backcross, doubled haploid lines and CEPH. The second generation genetic maps, such as high density, high resolution and saturated linkage maps have also been developed in several plants and animals mainly by enriching the primary maps locally or globally. Molecular mapping has paved the way for positioning of simply inherited trait loci (SITL) controlling oligogenic characters and quantitative trait loci (QTL) controlling polygenic characters. These have in turn facilitated marker assisted breeding (MAB) or molecular breeding (MB) for improvement in these traits. It has also recently been possible to mendelize the QTLs for precise monitoring of the gene clusters. Construction of molecular maps of two or more species/genera using a common set of markers and characters have resulted in comparative mapping that provides valuable information on genome homology and thus could illuminate on phylogenetic relationship and evolution in several taxa. Genome mapping has also provided the platform for chromosome walking or chromosome landing for isolating the chromosomal fragment containing a target gene and its (map based) cloning (MBC) for use in genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S., Bollich C. N. and Tanksley S. D. 1992. RFLP tagging of a gene for aroma in rice. Theor. Appl. Genet., 84: 825–828

    Article  CAS  Google Scholar 

  • Ahn S., Anderson J. A., Sorrells M. E. and Tanksley S. D. 1993. Homeologous relationships of rice, wheat, and maize chromosomes. Mol. Gen. Genet., 241: 483–490

    Article  PubMed  CAS  Google Scholar 

  • Ahn S. and Tanksley S. D. 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci., USA, 90: 7980–7984

    CAS  Google Scholar 

  • Albar L. and Lorieux M. et al. (8 authors). 1998. Genetic basis and mapping of the resistance to rice yellow mottle virus. I. QTLs identification and relationship between resistance and plant morphology. Theor. Appl. Genet., 97: 1145–1154

    Article  CAS  Google Scholar 

  • Ali. 1999. Mapping quantitative trait loci for root traits related to drought resistance in rice (Oryza sativa L. ) using AFLP markers. Ph. D. Thesis, Texas Tech University, Lubbock, Texas, USA.

    Google Scholar 

  • Almassy L. and Blangero J. 1998. Multipoint quantitative trait linkage analysis in general pedigrees. Am. J. Hum. Genet., 62: 1198–1221

    Article  Google Scholar 

  • Amos C. I. and Elston R. C. 1989. Robust methods for the detection of genetic linkage for quantitative data from pedigrees. Genet Epidemiol, 6: 349–360

    Article  PubMed  CAS  Google Scholar 

  • Anderson J. A., Waldron B. L., Moreno-Sevilla B., Stack R. W. and Frohberg R. C. 1998. Detection of Fusarium head blight resistance QTL in wheat using AFLPs and RFLPs. In: Proc. 9th Int. Wheat Genet Symp., (ed. ) Slinkard A. E., Univ Saskatchewan, Saskatoon, 1: 135–137.

    Google Scholar 

  • Araki E., Miura H. and Sawada S. 1999. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet., 98: 977–984.

    Article  CAS  Google Scholar 

  • Autrique E., Singh R. P., Tanksley S. D. and Sorells M. E. 1995. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome, 38: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Baura T. J., Gresshoff P. M., Lewis S. A. and Dean R. A. 1992. DNA amplification fingerprinting (DAF) of isolates of four common Meloidogyne species, and their host races. Phytopathology, 82: 1095

    Google Scholar 

  • Bennetzen J. L. and Freeling M. 1993. Grasses as a single genetic system: genome composition, colinearity and compatibility. Trends Genet., 9: 259–261

    Article  PubMed  CAS  Google Scholar 

  • Berhan A. M., Hulbert S. H., Butler L. G. and Bennetzen J. L. 1993. Structure and evolution of the genome of Sorghum bicolor and Zea mays. Theor. Appl. Genet., 86: 598–604.

    Article  CAS  Google Scholar 

  • Bernatzky R. and Tanksley S. D. 1986. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics, 112: 887–898.

    PubMed  CAS  Google Scholar 

  • Bezant J., Laurie D. A., Pratchett N., Chojecki J. and Kearsey M. 1997. Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L. ) cross using marker regression. Mol. Breed., 3: 29–38.

    Article  CAS  Google Scholar 

  • Binelli G., Gianfrancheschi L., Pe M. E., Taramino G., Busso C., Stenhouse J. and Ottaviano E. 1992. Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor. Appl. Genet., 84: 10–16.

    Article  CAS  Google Scholar 

  • Bonierbale M. W., Plaisted R. L. and Tanksley S. D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120: 1095–1103.

    PubMed  CAS  Google Scholar 

  • Bonierbale M. W., Plaisted R. L., Pineda O. and Tanksley S. D. 1994. QTL analysis of trichome-mediated insect resistance in potato. Theor. Appl. Genet., 87: 973–987.

    Article  CAS  Google Scholar 

  • Borovkova LG., Steffenson B. J. and Jin Y. et al. (8 authors). 1995. Identification of molecular markers linked to the stem rust resistance gene rpg4 in barley. Phytopathology, 85: 181–185.

    Article  CAS  Google Scholar 

  • Botstein D., White R. L., Skolnick M. and Davis R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314–331.

    PubMed  CAS  Google Scholar 

  • Brim C. A. 1966. A modified pedigree method of selection in soybeans. Crop Sci., 6: 220.

    Article  Google Scholar 

  • Burke D. T., Carle G. F. and Olson M. V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 236: 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Burr B., Burr F. A., Matz E. C. and Romero-Severson J. 1992. Pinning down loose ends: Mapping telomeres, and factors affecting their length. Plant Cell, 4: 953–960.

    PubMed  CAS  Google Scholar 

  • Burr B., Burr F. A., Thompson K. H., Albertson M. C. and Stuber C. W. 1988. Gene mapping with recombinant inbreds in maize. Genetics, 118: 519–526.

    PubMed  CAS  Google Scholar 

  • Butruille D. V., Guries R. P. and Osborn T. C. 1999. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 153: 949–964.

    PubMed  CAS  Google Scholar 

  • Cadalen T., Boeuf C., Bernard S. and Bernard M. 1997. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. And comparison with a map from a wide cross. Theor. Appl. Genet., 94: 367–377.

    Article  CAS  Google Scholar 

  • Cadalen T. and Sourdille G. et al (9 authors). 1998. Molecular markers linked to genes affecting plant height in wheat using a double-haploid population. Theor. Appl. Genet., 96: 933–940.

    Article  CAS  Google Scholar 

  • Camargo L. E. A. and Osborn T. C. 1996. Mapping loci controlling flowering time in Brassica oleracea. Theor. Appl. Genet., 92: 610–616.

    Article  CAS  Google Scholar 

  • Camargo L. E. A., Savides L., Jung G., Nienhuis J. and Osborn T. C. 1997. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J. Hered., 88: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Cao W., Huges G. R., Ma H. and Dong Z. 1998. Development of DNA based markers for resistance to Septoria nodorum blotch in durum wheat. In: Proc. 9th Int. Wheat Genet. Symp., (ed. ) Slinkard A. E., Univ Saskatchewan, Saskatoon, 3: 95–97.

    Google Scholar 

  • Causse M. A., Fulton T. M. and Cho Y. G. et al. (13 authors). 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138: 1251–1274.

    PubMed  CAS  Google Scholar 

  • Champoux M. C, Wang G. L., Sarkarung S., Mackill D. J., O’Toole J. C., Huang N. and McCouch S. R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet., 90: 969–981.

    Article  CAS  Google Scholar 

  • Chen X., Temnykh S., Xu Y., Cho Y. G. and McCouch S. R. 1997. Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L. ). Theor. Appl. Genet., 95: 553–567.

    Article  CAS  Google Scholar 

  • Chen X. M., Line R. F. and Leung H. 1998. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor. Appl. Genet., 97: 345–355.

    Article  CAS  Google Scholar 

  • Cheung W. Y., Friesen L., Rakow G. F. W., Seguin-Swartz G. and Landry B. S. 1997. A RFLP-based linkage map of mustard [Brassica juncea (L. ) Czern and Coss]. Theor. Appl. Genet., 94: 841–851.

    Article  CAS  Google Scholar 

  • Chisholm S. T., Mahajan S. K., Whittam S. A., Yamamoto M. L. and Carrington J. C. 2000. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci., USA, 97: 489–494.

    CAS  Google Scholar 

  • Cho Y. G., Eun M. Y., McCouch S. R. and Chae Y. A. 1994. The semidwarf gene, sd-1 of rice (Oryza sativa L. ) II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet., 89: 54–59.

    CAS  Google Scholar 

  • Choi S. H. and Leach J. E. 1994. Identification of the XorII methyltransferase gene and a vsr homolog from Xanthomonas oryzae pv. Oryzae. Mol. Gen. Genet., 244: 383–390.

    CAS  Google Scholar 

  • Chunwongse J., Bunn T. B., Crossman C., Jiang J. and Tanksley S. D. 1994. Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor. Appl. Genet., 89: 76–79.

    Article  CAS  Google Scholar 

  • Churchill G., Giovannoni J. J. and Tanksley S. D. 1993. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc. Natl. Acad. Sci., USA, 90: 16–20.

    Google Scholar 

  • Chyi Y. S., Hoenecke M. E. and Sernyk J. L. 1992. A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome, 35: 746–757.

    Article  CAS  Google Scholar 

  • Cohen D., Chumakov I. and Wessenbach J. 1993. A first-generation physical map of the human genome. Nature, 366: 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Coulson A., Sulston J., Brenner S. and Karn J. 1986. Toward a physical map of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci., USA, 83: 7821–7825.

    CAS  Google Scholar 

  • Courtois B., Mclaren G., Sinha P. K., Prasad K., Yadav R. and Shen L. 2000. Mapping QTLs associated with drought avoidance in upland rice. Mol. Breed., 6: 55–66.

    Article  CAS  Google Scholar 

  • De la Pena R. C., Murray T. D. and Jones S. S. 1996. Linkage relations among eyespot resistance gene Pch2, endopeptidase EP-A1B and RFLP marker Xpsr121 on chromosome 7A of wheat. Plant. Breed., 115: 273–275.

    Article  Google Scholar 

  • DeVicente M. C. and Tanksley S. D. 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134: 585–596.

    PubMed  CAS  Google Scholar 

  • Devos K. M., Atkinson M. D., Chinoy C. N., Liu C. J. and Gale M. D. 1992. RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor. Appl. Genet., 83: 931–939.

    Article  CAS  Google Scholar 

  • Devos K. M., Chao S. P., Li Q. Y., Simonetti M. C. and Gale M. D. 1994. Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics, 138: 1287–1292.

    PubMed  CAS  Google Scholar 

  • Devos K. M., Wang Z. M., Beales J., Sasaki T. and Gale M. D. 1998. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor. Appl. Genet., 96: 63–68.

    Article  CAS  Google Scholar 

  • Diers B. W., Klein P., Fehr W. R. and Shoemaker R. C. 1992. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet., 83: 608–612.

    Article  Google Scholar 

  • Dixon M. S., Jones D. A., Keddie J. S., Thomas C. M., Harrison K. and Jones J. D. G. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 84: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Doebly J. and Stec A. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics, 129: 285–295.

    Google Scholar 

  • Dubcovsky J., Lijavetzky A. L. and Tranquilli G. 1998. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet., 97: 968–975.

    Article  CAS  Google Scholar 

  • Dufour P., Grivet L. D., Hont A., Deu M., Trouche G., Glaszman J. C. and Hamon P. 1996. Comparative genetic mapping between duplicated segments on maize chromosome 3 and 8 and homoeologous regions in sorghum and sugarcane. Theor. Appl. Genet., 92: 1024–1030.

    Article  CAS  Google Scholar 

  • Eastwood R. F., Lagudah E. S. and Appels R. 1994. A direct search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome, 37: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Fahima T., Chague V., Sun G., Korol A., Ronin Y., Roder M., Grama A. and Nevo E. 1997. Identification and potential use of PCR markers flanking the Triticum dicoccoides-derived stripe rust resistance gene Yr15 in wheat. In: Wheat 5th Int. Cong. Plant Mol. Biol., Singapore, Abstr, 249.

    Google Scholar 

  • Fan W., Wei X., Shukla H., Parimoo S., Xu H., Sankhavaram P., Li Z. B. and Weissman S. M. 1993. Application of cDNA selection techniques to regions of the human MHC. Genomics, 17: 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Fatokun C. A., Menancio-Hautea D. I., Danesh D. and Young N. D. 1992. Evidence for orthologous seed weight genes in cowpea and mungbean based on RFLP mapping. Genetics, 132: 841–846.

    PubMed  CAS  Google Scholar 

  • Faure S., Noyer J. L., Horry J. P., Bakry F., Lanaud C. and De Leon D. G. 1993. A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor. Appl. Genet., 87: 517–526.

    Article  CAS  Google Scholar 

  • Ferreira M. E., Williams P. H. and Osborn T. C. 1994. RFLP mapping of Brassica using doubled haploid lines. Theor. Appl. Genet., 89: 615–621.

    Article  CAS  Google Scholar 

  • Ferreira M. E., Satagopan J. M., Yandell B. S., Williams P. H. and Osborn T. C. 1995a. Mapping loci Controlling Vernalization requirement and flowering time in Brasica napus. Theor. Appl. Genet., 90: 727–732.

    Article  Google Scholar 

  • Ferreira M. E., Williams P. H. and Osborn T. C. 1995b. Mapping of a locus controlling resistance to Albugo Candida in Brassica napus using molecular markers. Phytopathology, 85: 218–220.

    Article  CAS  Google Scholar 

  • Feuillet C., Messmer M., Schachermayr G. and Keller B. 1995. Genetic and physical characterization of the Lr1 leaf rust locus in wheat (Triticum aestivum L. ). Mol. Gen. Genet., 248: 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Figdore S. S., Ferreira M. E., Slocum M. K. and Williams P. H. 1993. Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica, 63: 33–44.

    Article  Google Scholar 

  • Foolad M. R. and Jones R. A. 1993. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet., 87: 184–192.

    Article  CAS  Google Scholar 

  • Gallego F., Feuillet C., Messmer M. and Penger A. et al. (8 authors). 1998. Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome, 41: 328–336.

    PubMed  CAS  Google Scholar 

  • Ganal M. W., Broun P. and Tanksley S. D. 1992. Genetic mapping of tandemly repeated telomeric DNA sequences in tomato Lycopercicon esculentum. Genomics, 14: 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Ganal M. W., Young N. D. and Tanksley S. D. 1989. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol. Gen. Genet., 215: 395–400.

    Article  CAS  Google Scholar 

  • Gardiner K. and Mural R. 1995. Getting the message: identifying transcribed sequences. Trends Genet., 11: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S. and Majumder P. P. 2000a. Mapping quantitative trait loci via the EM algorithm and Bayesian classification. Genet. Epidemiol., 19: 97–126.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S. and Majumder P. P. 2000b. An improved procedure of mapping a quantitative trait locus via the EM algorithm using posterior probabilities. J. Genet., 79: 47–53.

    Article  CAS  Google Scholar 

  • Giovannoni J. J., Wing R. A., Ganal M. W. and Tanksley S. D. 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res., 19: 6553–6558.

    Article  PubMed  CAS  Google Scholar 

  • Goldgar D. E. 1990. Multipoint analysis of human quantitative genetic variation. Am. J. Hum. Genet., 47: 957–967.

    PubMed  CAS  Google Scholar 

  • Grant M. R., Godiard L. and Straube E. et al. (8 authors). 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269: 843–846.

    Article  PubMed  CAS  Google Scholar 

  • Gupta P. K. and Varshney R. K. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113: 163–185.

    Article  CAS  Google Scholar 

  • Haidane J. B. S. 1919. The combination of linkage values and calculation of distance between the loci of linked factors. J. Genet., 8: 299–309.

    Google Scholar 

  • Haley C. S. and Knott S. A. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Hallden C., Hjerdin A. and Rading I. M. et al. (9 authors). 1996. A high density RFLP linkage map of sugar beet. Genome, 39: 634–645.

    Article  PubMed  CAS  Google Scholar 

  • Han F., Kleinhofs A., Ullrich S. E., Kilian A., Yano M. and Sasaki T. 1998. Synteny with rice: analysis of barley malting quality QTLs and rpg4 chromosome regions. Genome, 41: 373–380.

    CAS  Google Scholar 

  • Haseman J. K. and Elston R. C. 1972. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet., 2: 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Hayano-Saito Y., Tsuji T., Fujii K., Saito K., Iwasaki M. and Saito A. 1998. Localization of the rice stripe disease resistance gene, stv-b1, by graphical genotyping and linkage analyses with molecular markers. Theor. Appl. Genet., 96: 1044–1049.

    Article  CAS  Google Scholar 

  • Helentjaris T. 1987. A genetic linkage map for maize based on RFLPs. Trends Genet., 3: 217–221.

    Article  CAS  Google Scholar 

  • Helentjaris T. 1993. Implications for conserved genomic structure among plant species. Proc. Natl. Acad. Sci., USA, 90: 8308–8309.

    CAS  Google Scholar 

  • Helentjaris T., Slocum M. K., Wright S., Schafer A. and Nienhuis J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet., 72: 761–769.

    Article  CAS  Google Scholar 

  • Hirabayashi H. and Ogawa T. 1995. RFLP mapping of Bph-1 (Brown plant hopper resistance genes) in rice. Breed Sci., 45: 369–371.

    CAS  Google Scholar 

  • Hittalmani S., Foolad M. R., Mew T. V., Rodriguez R. L. and Huang N. 1995. Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregating population. Theor. Appl. Genet., 91: 9–14.

    Article  CAS  Google Scholar 

  • Hoenecke M. and Chyi Y. S. 1991. Comparison of Brassica napus and B. rapa genomes based on restriction fragment length polymorphism mapping. In: Proc. 8th Int. Rapeseed Cong., (ed. ) McGregor D. I., GCIRC, Saskatoon: 1102–1107.

    Google Scholar 

  • Hofte H., Desprez T. and Amselem J. et al. (28 authors). 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J., 4: 1051–1061.

    Article  PubMed  CAS  Google Scholar 

  • Huang N. and Parco A. et al. (9 authors). 1997. RFLP mapping of isozymes, RAPD, and QTLs for grain shape, brown plant hopper resistance in doubled-haploid rice population. Mol. Breed., 3: 105–113.

    Article  CAS  Google Scholar 

  • Hulbert S. H., Richter T. E., Axtell J. D. and Bennetzen J. L. 1990. Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl. Acad. Sci., USA, 87: 4251–4255.

    CAS  Google Scholar 

  • Ishii T., Brar D. S., Multani D. S. and Khush G. S. 1994. Molecular tagging of genes for brown plant hopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome, 37: 217–221.

    Article  CAS  Google Scholar 

  • Jahoor A. 1998. Marker assisted breeding in cereals, specially with respect to synteny among loci for mildew resistance. In: Genetics and Biotechnology for crop Improvement, (ed. ) Gupta P. K., Rastogi Pub., Meerut, pp. 237–254.

    Google Scholar 

  • Jarvis P., Lister C., Szabo V. and Dean C. 1994. Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol. Biol., 24: 685–687.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys A. J., Wilson V. and Thein S. L. 1985. Hypervariable minisatellite regions in human DNA. Nature, 314: 4251–4255.

    Article  Google Scholar 

  • Jena K. K., Khush G. S. and Kochert G. 1994. Comparative RFLP mapping of a wild rice, Oryza officinalis and cultivated rice, Oryza sativa. Genome, 37: 382–389.

    Article  CAS  Google Scholar 

  • Jia J., Devos K. M., Chao S., Miller T. E., Reader S. M. and Gale M. D. 1996. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet., 92: 559–565.

    Article  CAS  Google Scholar 

  • Khairallah M. M., Bohn M. and Jiang C. et al. (8 authors). 1998. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 117: 309–318.

    Article  Google Scholar 

  • Khush G. S. and Rick C. M. 1967. Studies on the linkage map of chromosome 4 in tomato and on the transmission of induced deficiencies. Genetica, 38: 74–94.

    Article  Google Scholar 

  • Kianian S. F. and Quiros C. F. 1992. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor. Appl. Genet., 84: 544–554.

    Article  Google Scholar 

  • Kinoshita T. 1993. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet. Newsl., 10: 7–39.

    Google Scholar 

  • Kleinhofs A., Kilian A. and Saghai-Maroof et al. (22 authors). 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet., 86: 705–712.

    Article  CAS  Google Scholar 

  • Kole C. 1997. Molecular mapping in Brassica campestris (syn. rapa). Final Project Report submitted to DBT, GOI, Lab. Mol. Biol. Biotech., Orissa Univ Agril Tech, Bhubaneswar, India.

    Google Scholar 

  • Kole C., Kole P., Vogelzang R. and Osborn T. C. 1997. Genetic Linkage map of a Brassica rapa recombinant Inbred population. J. Hered., 88: 553–557.

    Article  CAS  Google Scholar 

  • Kole C., Quijada P., Michaels A. D., Amasino R. M. and Osborn T. C. 2001. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor. Appl. Genet., 102: 425–430.

    Article  CAS  Google Scholar 

  • Kole C., Teutonico R., Mengistu A., Williams P. H. and Osborn T. C. 1996. Molecular mapping of a locus controlling resistance to Albugo Candida in Brassica rapa. Phytopathology, 86: 367–369.

    Article  CAS  Google Scholar 

  • Kole C., Williams P. H., Rimmer S. R. and Osborn T. C. 2002a. Linkage mapping of genes controlling resistance to white rust (Albugo Candida) in Brassica rapa (syn. campestris) and comparative mapping to B. napus and Arabidopsis thaliana. Genome, 45: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Kole C., Thormann C. E., Karlsson B. H., Palta J. P., Gaffney P., Yandell B. and Osborn T. C. 2002b. Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol. Breed., 9: 201–210.

    Article  CAS  Google Scholar 

  • Konieczny A. and Ausubel F. M. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J., 4: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Korzun V., Roder M. S., Ganal M. W., Worland M. J. and Law C. N. 1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L. ). Theor. Appl. Genet., 96: 1104–1109.

    Article  CAS  Google Scholar 

  • Korzun V., Roder M. S., Worland M. J. and Borner A. 1997. Intrachromosomal mapping for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breed., 116: 227–232.

    Article  Google Scholar 

  • Kosambi D. D. 1944. The estimation of map distance from recombination values. Ann. Eugen., 12: 172–175.

    Google Scholar 

  • Kowalski S. D., Lan T. H., Feldmann K. A. and Paterson A. H. 1994. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved gene order. Genetics, 138: 499–510.

    PubMed  CAS  Google Scholar 

  • Kruglyk L. and Lander E. S. 1995. A nonparametric approach for mapping quantitative trait loci. Genetics, 139: 1421–1428.

    Google Scholar 

  • Kulwal P. L., Roy J. K., Balyan H. S. and Gupta P. K. 2002. QTL mapping for some growth and leaf chracters in bread wheat. Plant Science, 164: 267–277.

    Article  Google Scholar 

  • Kurata N. et al. (28 authors). 1994a. A 300 kilobase interval genetic map of rice including 883 expressed sequence. Nature Genet., 8: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Kurata N., Moore G., Nagamura Y., Foote T., Yano M., Minobe Y. and Gale M. D. 1994b. Conservation of genome structure between rice and wheat. Biotechnology, 12: 276–278.

    Article  CAS  Google Scholar 

  • Lagercrantz U. and Lydiate D. J. 1996. Comparative genome mapping in Brassica. Genetics, 144: 1903–1910.

    CAS  Google Scholar 

  • Lagercrantz U., Putterill J., Coupland G. and Lydiate D. 1996. Comparative mapping in Arabidopsis and Brassica, fine scale genome colinearity and congruence of genes controlling flowering time. Plant J., 9: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmikumaran M., Mohapatra T., Gupta V. S. and Ranjekar P. K. 2003. Molecular Markers in Improvement of Wheat and Brassica. In: Plant Breeding: Mendelian to Molecular Approaches, (eds. ) Jain H. K. and Kharkwal M. C., Narosa, New Delhi, 230–256.

    Google Scholar 

  • Lander E. S. and Botstein D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121: 185-199; and Corrigendum. Genetics, 136: 705.

    Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Dally M. J., Lincoln S. E. and Newburg L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Landry B. S., Hubert N., Crete R., Chang M. S., Lincoln S. E. and Etoh T. 1992. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome, 35: 409–420.

    Article  CAS  Google Scholar 

  • Landry B. S., Hubert N., Etoh T., Harada J. J. and Lincoln S. E. 1991. A genetic map of Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 34: 543–552.

    Article  CAS  Google Scholar 

  • Landry B. S., Kesseli R. V., Farrara B. and Michelmore R. W. 1987. A genetic map of lettuce (Lactuca saliva L. ) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics, 116: 331–337.

    PubMed  CAS  Google Scholar 

  • Laurie D. A., Pratchett N., Bezant J. H. and Snape J. W. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L. ) cross. Genome, 38: 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Li Z. B., Pinson S. R. M., Marchetti M. A., Stansel J. W. and Park W. D. 1995. Characterization of quantitative trait loci (QTLs) in cultivated rice to field resistance to sheath blight (Rhizoctonia solani). Theor. Appl. Genet., 91: 382–388.

    CAS  Google Scholar 

  • Liang C. Z., Gu M. H., Pan X. B., Liang G. H. and Zhu L. H. 1994. RFLP tagging a new semidwarfing gene in rice. Theor. Appl. Genet., 88: 898–900.

    Article  CAS  Google Scholar 

  • Lilley J. M., Ludlow M. M., McCouch S. R. and O’Toole J. C. 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exptl. Bot., 47: 1427–1436.

    Article  CAS  Google Scholar 

  • Lin H. X., Qian H. R. and Zhuang J. Y. et al. (8 authors). 1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L. ). Theor. Appl. Genet., 92: 920–927.

    Article  CAS  Google Scholar 

  • Lin Y. R., Schertz K. F. and Paterson A. H. 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 141: 391–411.

    PubMed  CAS  Google Scholar 

  • Lincoln S. E., Dally M. J. and Lander E. S. 1992a. Constructing genetic linkage maps with MAPMAKER/ EXP 3. 0. Whitehead Institute Technical Reports, Ed. 3.

    Google Scholar 

  • Lincoln S., Dally M. and Lander E. S. 1992b. Mapping genes controlling quantitative traits with MAPMAKER/QTL 1. 1. Whitehead Institute Technical Reports, Ed. 2.

    Google Scholar 

  • Ling H. Q., Koch G., Baumlein H. and Ganal M. W. 1999. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc. Natl. Acad. Sci., USA, 96: 7098–7103.

    CAS  Google Scholar 

  • Liu B. H. and Knapp S. J. 1992. G-Mendel: A program for Mendelian segregation and linkage analysis of individual or multiple progeny populations using log-likelihood ratios. J. Hered., 81: 407.

    Google Scholar 

  • Liu S. C., Kowalski S. D., Lan T. H., Feldmann K. A. and Paterson A. H. 1996. Genome-wide high-resolution mapping by recurrent intermating, using Arabidopsis thaliana as a model. Genetics, 142: 247–258.

    PubMed  CAS  Google Scholar 

  • Liu Y. G. and Tsunewaki K. 1991. Restriction fragment length polymorphism analysis of wheat. II. Linkage maps of the RFLP sites in common wheat. Japan J. Genet., 66: 617–633.

    Article  CAS  Google Scholar 

  • Lovett M. 1994. Fishing for complements: finding genes by direct selection. Trends Genet., 10: 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Lovett M., Kere J. and Hinton L. M. 1991. Direct selection: A method for the isolation of cDNAs encoded by large genomic regions. Proc. Natl. Acad. Sci., USA, 88: 9628–9632.

    CAS  Google Scholar 

  • Lu C., Shen L. and Tan Z. et al. (7 authors). 1997. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled-haploid population. Theor. Appl. Genet., 94: 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Luo M., Bilodeau P., Koltunow A., Dennis E. S., Peacock W. J. and Chaudhury A. M. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA, 96: 296–301.

    CAS  Google Scholar 

  • Ma Z. Q., Gill B. S., Sorrells M. E. and Tanksley S. D. 1993. RFLP markers linked to two Hessian fly resistance genes in wheat (Triticum aestivum L. ) from Triticum tauschii (Coss. ) Schal. Theor. Appl. Genet., 85: 750–754.

    Article  CAS  Google Scholar 

  • Ma Z. Q. and Sorells M. E. 1995. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci., 35: 1137–1143.

    Article  CAS  Google Scholar 

  • Ma Z. Q., Sorrells M. E. and Tanksley S. D. 1994. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat. Genome, 37: 871–875.

    Article  PubMed  CAS  Google Scholar 

  • Mackill D. J., Salam M. A., Wang Z. Y. and Tanksley S. D. 1993. A major photoperiod-sensitivity gene tagged with RFLP and isozyme markers in rice. Theor. Appl. Genet., 85: 536–560.

    Article  CAS  Google Scholar 

  • Maheswaran M. 1995. Identification of quantitative traits for days to flowering and photoperiod sensitivity in rice (Oryza sativa L. ). Tamil Nadu Agricultural University, Coimbatore, India (Ph. D. Thesis).

    Google Scholar 

  • Maheswaran M., Subudhi P. K., Nandi S., Xu J. C., Parco D., Yang C. and Huang N. 1997. Polymorphism, distribution and segregation of AFLP markers in a doubled haploid rice population. Theor. Appl. Genet., 94: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Manly K. F. 1995. New functions in Map Manager, a macro computer program for genomic mapping. Proceedings of Plant Genome III, San Diego, CA, 15-19 Jan 1995, p. 61.

    Google Scholar 

  • Markert C. L. and Moller F. 1959. Multiple forms of enzymes: tissue, ontogenic, and species-specific patterns. Proc. Natl. Acad. Sci., USA, 45: 753–763.

    CAS  Google Scholar 

  • Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D. and Tanksley S. D. 1994. Map based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262: 1432–1436.

    Article  Google Scholar 

  • Martin G. B., Frary A., Wu T., Brommonschenkel S., Chungwongse J., Earle E. D. and Tanksley S. D. 1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. The Plant Cell, 6: 1543–1552.

    PubMed  CAS  Google Scholar 

  • Maxam A. M. and Gilbert W. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci., USA, 74: 560–564.

    CAS  Google Scholar 

  • McCouch S. R., Abenes M. L., Angeles R., Khush G. S. and Tanksley S. D. 1991. Molecular tagging of a recessive gene Xa-5 for resistance to bacterial blight of rice. Rice Genet. Newsl., 8: 143–145.

    Google Scholar 

  • McCouch S. R., Kochert G., Yu Z. H., Wang Z. Y., Khush G. S., Coffman D. R. and Tanksley S. D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet., 76: 815–829.

    Article  CAS  Google Scholar 

  • Menancio-Hautea D., Fatokun C. A., Kumar L., Danesh D. and Young N. D. 1993. Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor. Appl. Genet., 88: 797–810.

    Article  Google Scholar 

  • Michelmore R. W., Paran I. and Kesseli R. V. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci., USA, 88: 9828–9832.

    Google Scholar 

  • Miyamoto M., Ando I., Rybka K., Kodama O. and Kawasaki S. 1996. High resolution mapping of the indica-derived rice blast resistance genes. 1. Pi-b. Mol. Plant Microbe Interaction, 9: 6–13.

    Article  CAS  Google Scholar 

  • Mohan M., Nair S., Bentur J. S., Prasad Rao U. and Bennet J. 1994. RFLP and RAPD mapping of the rice Gm-2 gene that confers resistance to biotype 1 of gall midge (Orseolia oryzae). Theor. Appl. Genet., 87: 782–788.

    Article  CAS  Google Scholar 

  • Moore G., Foote T., Helentzaris T., Devos K. M., Kurata N. and Gale M. D. 1995a. Was there a single ancestral cereal chromosome? Trend Genet., 11: 81–82.

    Article  CAS  Google Scholar 

  • Moore G., Devos K. M., Wang Z. and Gale M. D. 1995b. Cereal genome evolution. Curr. Biol., 5: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Morgan J. G., Dolganov G. M., Robbins S. E., Hinton L. M. and Lovett M. 1992. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucl. Acids Res., 20: 5173–5179.

    Article  PubMed  CAS  Google Scholar 

  • Morgan T. H. 1910. Sex-linked inheritance in Drosophila. Science, 32: 120–122.

    CAS  Google Scholar 

  • Mukherjee A. K., Mohapatra T., Varshney A., Sharma R. and Sharma R. P. 2001. Molecular mapping of a locus controlling resistance to Albugo Candida in Indian mustard. Plant Breed., 120: 483–487.

    Article  CAS  Google Scholar 

  • Mullis K. and Faloona F. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol, 155: 335–351.

    Article  PubMed  CAS  Google Scholar 

  • Mullis K., Faloona F., Scharf S., Saiki R. K., Horn G. and Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp Quant. Biol., 51: 263.

    CAS  Google Scholar 

  • Nair S., Kumar A., Srivastava M. N. and Mohan M. 1996. PCR-based DNA markers linked to a gall midge resistance gene, Gm41 has potential for marker aided selection in rice. Theor. Appl. Genet., 92: 660–665.

    Article  CAS  Google Scholar 

  • Nakamura S., Asakawa S., Ohmido N., Fukui K., Shimizu N. and Kawasaki S. 1997. Mol Construction of an 800kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta using a highly representative rice BAC library. Gen. Genet., 254: 611–620.

    Article  CAS  Google Scholar 

  • Naqvi N. I., Bonman J. M., Mackill D. J., Nelson R. J. and Chattoo B. J. 1995. Identification of RAPD markers linked to a major blast resistance gene in rice. Mol. Breed., 1: 341–348.

    Article  CAS  Google Scholar 

  • Nelson J. C., Sorrells M. E., Van Deynze A. E., Lu L. H., Atkinson M. D., Bernard M., Leroy P., Faris J. and Anderson J. A. 1995. Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics, 141: 721–731.

    PubMed  CAS  Google Scholar 

  • Newman T., De Bruijin F. J. and Green P. et al. (12 authors). 1994. Genes Galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol., 106: 1241–1255.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson N. O. and Hansen M. et al. (9 authors). 1999. QTL analysis of Cercospora leaf spot in sugar beet. Plant Breed., 118: 327–334.

    Article  CAS  Google Scholar 

  • Nodari R. O., Tscai S. M., Gilbertson R. L. and Gepts P. 1993a. Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor. Appl. Genet., 85: 513–520.

    Article  CAS  Google Scholar 

  • Nodari R. O., Tscai S. M., Guzman P., Gilbertson R. L. and Gepts P. 1993b. Towards an integrated map of common bean. 3. Mapping genetic factors controlling host-bacterial interactions. Genetics, 134: 341–350.

    PubMed  CAS  Google Scholar 

  • Nozaki T., Kumarzaki A., Koba T., Ishikawa K. and Ikehashi H. 1997. Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica, 95: 115–123.

    Article  CAS  Google Scholar 

  • O’Donoughue L. S., Wang Z. M., Roder M. S., Kneen B., Leggett M., Sorells M. E. and Tanksley S. D. 1992. An RFLP based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtul). Genome, 35: 765–771.

    Article  CAS  Google Scholar 

  • Olds T. M. 1996. Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution, 50: 140–145.

    Article  Google Scholar 

  • Olson J. M. 1995. Robust multipoint linkage analysis: an extension of the Haseman-Elston method. Genet. Epidemiol., 12: 177–193.

    Article  PubMed  CAS  Google Scholar 

  • Osborn T. C., Kole C., Parkin I. A. P., Sharpe A. G., Kuiper M., Lydiate D. J. and Trick M. 1997. Comparison of vernalization responsive flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 146: 1123–1129.

    PubMed  CAS  Google Scholar 

  • Padmavathi G. 2002. Molecular mapping of genes controlling some agronomic characters in rice. Unpub Ph. D. Thesis, Utkal Univ, Bhubaneswar, India.

    Google Scholar 

  • Panigrahi J. 2002. Molecular mapping in Brassica campestris. Unpub Ph. D. Thesis, Utkal Univ, Bhubaneswar, India.

    Google Scholar 

  • Paran I., Goldman I., Tanksley S. D. and Zamir D. 1995. Recombinant inbred lines for genetic mapping in tomato. Theor. Appl. Genet., 90: 542–548.

    Article  CAS  Google Scholar 

  • Parimoo S., Patanjali S. R., Shukla H., Chaplin D. D. and Weissman S. M. 1991. cDNA selection: Efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc. Natl. Acad. Sci., USA, 88: 9623–9627.

    CAS  Google Scholar 

  • Paterson A. H. 1996. Physical mapping and map-based cloning: Bridging the gap between DNA markers and genes. In: Genome Mapping in Plants, (ed. ) Paterson A. H., Academic Press, RG Landes Co, Austin, pp. 55–62.

    Google Scholar 

  • Paterson A. H. and Bowers J. E. et al. 2000. Comparative genomics of Plant chromosomes. Plant Cell, 12: 1523–1539.

    PubMed  CAS  Google Scholar 

  • Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S. and Tanksley S. D. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 127: 181–197.

    PubMed  CAS  Google Scholar 

  • Paterson A. H., Deverna J. W., Lanini B. and Tanksley S. D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 124: 735–742.

    PubMed  CAS  Google Scholar 

  • Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E. and Tanksley S. D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature, 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Paterson A. H., Lin Y. R., Li Z. B., Schertz K. F., Doebley J. F., Pinson S. R. M., Liu S. C., Stansel J. W. and Irvine J. E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 269: 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  • Peng J. H., Fahima T., Roder M. S., Li Y. C., Dahn A., Grama A., Ronin Y. I., Korol A. B. and Nevo E. 1999. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat Triticum dicocoides and suggestive negative crossover interference on chromosome 1B. Theor. Appl. Genet., 98: 862–872.

    Article  CAS  Google Scholar 

  • Penner G. A., Zirino M., Kruger S. and Townley-Smith F. 1998. Accelerated recurrent parent selection in wheat with microsatellite markers. In: Proc. 9th Int. Wheat Genet Symp., (ed. ) Slinkard A. E., Univ Extn Press, Univ Saskatchewan, Saskatoon, 1: 131–134.

    Google Scholar 

  • Pereira M. G., Lee M. and Rayapati P. J. 1994. Comparative RFLP and QTL mapping in sorghum and maize. Poster 169. In: 2nd Int. Conf. Plant Genome, New York: Scherago International, Inc.

    Google Scholar 

  • Philipp U., Wehling P. and Wricke S. G. 1994. A linkage map of rye. Theor. Appl. Genet., 88: 243–248.

    Article  CAS  Google Scholar 

  • Prabhu K. V., Somens D. J., Rakow G. and Gugel R. K. 1998. Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor. Appl. Genet., 97: 865–870.

    Article  CAS  Google Scholar 

  • Pradhan A. K., Gupta V. S., Mukhopadhyay A., Arumugam N., Sodhi Y. S. and Pental D. 2003. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor. Appl. Genet., 106: 607–614.

    PubMed  CAS  Google Scholar 

  • Prasad M., Varshney R. K., Kumar A., Balyan H. S., Sharma P. C. and Gupta P. K. 1999. A microsatellites marker associated with a QTL for grain protein content on chromosomal arm 2DL of bread wheat. Theor. Appl. Genet., 99: 341–345.

    Article  Google Scholar 

  • Prasad M., Kumar N., Kulwal P. L., Roder M., Balyan H. S., Dhaliwal H. S. and Gupta P. K. 2003. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet., 106. 659–667.

    PubMed  CAS  Google Scholar 

  • Prince J. P., Pochard E. and Tanksley S. D. 1993. Construction of a molecular linkage map of pepper, and a comparison of synteny with tomato. Genome, 36: 404–417.

    Article  PubMed  CAS  Google Scholar 

  • Procunier J. D., Knox R. E., Bernier A. M., Gray M. A. and Howes N. K. 1997. DNA markers linked to a T10 loose smut resistance gene in wheat (Triticul aestivum L. ). Genome, 40: 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Redona E. D. and Mackill D. J. 1998. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor. Appl. Genet., 96: 957–963.

    Article  CAS  Google Scholar 

  • Reinisch A. R., Dong J., Brubaker C. L., Stelly D., Wendel J. and Paterson A. H. 1994. An RFLP map of cotton (Gossypium hirsutum × G. barbadense): Chromosome organization and evolution in a disomic polyploid genome. Genetics, 138: 829–847.

    PubMed  CAS  Google Scholar 

  • Reiter R. S., Williams J. G. K., Feldman K. A., Rafalski J. A., Tingey S. V. and Schlonik P. A. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci., USA, 89: 1477–1481.

    CAS  Google Scholar 

  • Riede C. R. and Anderson J. A. 1996. Linkage of RFLP markers to an aluminium tolerance gene in wheat. Crop Sci, 36: 905–909.

    Article  Google Scholar 

  • Ronald P. C., Albano B., Tabien R., Abenes L., Wu K. K., McCouch S. R. and Tanksley S. D. 1992. Genetic and physical analysis of the rice bacterial blight disease resistance locus Xa21. Mol. Gen. Genet., 236: 113–120.

    CAS  Google Scholar 

  • Rong J. K., Millet E., Manisterski J. and Feldman M. 1998. A powdery mildew resistance gene from wild emmer transferred into common wheat and tagged by molecular markers. In: Proc. 9th Int. Wheat Genet. Symp., (ed. ) Slinkard A. E., Univ. Saskatchewan, Saskatoon, 3: 148–150.

    Google Scholar 

  • Rowland L. J. and Levi A. 1994. RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. elliottii). Theor. Appl. Genet., 89: 863–868.

    Google Scholar 

  • Sacco F., Suarez E. Y. and Naranjo T. 1998. Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinvalocho MA wheat. Genome, 41: 686–690.

    CAS  Google Scholar 

  • Saghai Maroof M. A., Yang G. P., Biyashev R. M., Maughan P. J. and Zhang Q. 1996. Analysis of the barley and rice genomes by comparative RFLP linkage mapping. Theor. Appl. Genet., 92: 541–551.

    Article  Google Scholar 

  • Saghai Maroof M. A., Zhang Q. and Biyashev R. M. 1994. Molecular marker analyses of powdery mildew resistance in barley. Theor. Appl. Genet., 88: 733–740.

    Article  Google Scholar 

  • Saiki R. K., Gelfand D. H., Stoffel S., Scharf S J., Higuchi R., Horn G. T., Mullis K. V. and Erlich H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239: 487.

    Article  PubMed  CAS  Google Scholar 

  • Sanger F., Nicklen S. and Coulson A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., USA, 74: 5463–5467.

    CAS  Google Scholar 

  • Sarfatti M., Katan J., Fluhr R. and Zamir D. 1989. An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene l2. Theor. Appl. Genet., 78: 755–759.

    Article  CAS  Google Scholar 

  • Sasaki T., Song J., Koga-ban Y. and Matsui E. et al. (21 authors). 1994. Toward cataloguing all rice genes: large scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J., 6: 615–624.

    Article  PubMed  CAS  Google Scholar 

  • Schimdt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D. and Dean C. 1995. Physical map and organization of Arabidopsis chromosome 4. Science, 270: 480–483.

    Article  Google Scholar 

  • Schon C. C., Lee M., Melchinger A. E., Guthrie W. D. and Woodman W. L. 1993. Mapping and characterization of QTL affecting resistance against second generation European corn borer in maize with the aid of RFLPs. Heredity, 70: 648–659.

    Article  CAS  Google Scholar 

  • Seyfarth R. C., Feuillet C. and Keller B. 1998. Development and characterization of molecular markers for the adult leaf rust resistance genes Lr13 and Lr35 in wheat. In: Proc. 9th Int. Wheat Genet. Symp., (ed. ) Slinkard A. E., Univ Saskatchewan, Saskatoon, 3: 154–155.

    Google Scholar 

  • Sharma R., Agrawal R. A. K., Kumar R., Mohapatra T. and Sharma R. P. 2002. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome, 45: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Shields R. 1993. Pastoral synteny. Nature, 365: 297–298.

    Article  Google Scholar 

  • Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y. and Simon M. 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci., USA, 89: 8794–8797.

    CAS  Google Scholar 

  • Slocum M. K., Figdore S. S., Kennard W. C., Suzuki J. Y. and Osborn T. C. 1990. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theor. Appl. Genet., 80: 57–64.

    Article  CAS  Google Scholar 

  • Snape J. W., Semikhodski A., Sarma R. and Korzun V. et al. 1998. Mapping vernalization loci in wheat and comparative mapping with other cereals. In: Proc. 9th Int. Wheat Genet Symp., (ed. ) Slinkard A. E., Univ Saskatchewan, Saskatoon, 3: 156–158.

    Google Scholar 

  • Song K. M., Suzuki J. Y., Slocum M. K., Williams P. H. and Osborn T. C. 1991. A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor. Appl. Genet., 82: 296–304.

    Article  CAS  Google Scholar 

  • Song W. Y., Wang G. L., Chen H. S., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H., Fauquet C. and Ronald P. A. 1995. A receptor kinase like protein encoded by the rice disease resistance gene Xa 21. Science, 270: 1804–1807.

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P., Charmet G., Trotett M., Tixier M. N., Boeuf C., Negre S., Barloy D. and Bernard M. 1998. Linkage between RFLP molecular markers and the dwarfing genes Rht-B1 and Rht-D1 in wheat. Hereditas, 128: 41–46.

    Article  CAS  Google Scholar 

  • Sourdille P., Perretant M. R., Charmet G., Leroy P., Gautier M. F., Jourdier P., Nelson J. C., Sorells M. E. and Bernard M. 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet., 93: 580–586.

    Article  CAS  Google Scholar 

  • Southern E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Stam P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J., 3: 739–744.

    Article  CAS  Google Scholar 

  • Steinmetz M., Minard K. and Horvath S. et al. 1982. A molecular map of the immune response region from the major histocompatibility complex of the mouse. Nature, 300: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T. and Lander E. S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132: 823–839.

    PubMed  CAS  Google Scholar 

  • Suiter K. A., Wendel J. F. and Case J. S. 1983. Linkage-1: a Pascal computer program for the detection and analysis of genetic linkage. J. Hered., 74: 203–204.

    PubMed  CAS  Google Scholar 

  • Sun G. L., Fahima T., Korol A. B., Turpeinien T., Grama A., Ronin Y. I. and Nevo E. 1997. Identification of molecular markers linked to Yr15 stripe resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet., 95: 622–628.

    Article  CAS  Google Scholar 

  • Talbert L. E., Bruckner, Smith L. Y., Sears R. and Martin T. J. 1996. Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor. Appl. Genet., 93: 463–467.

    Article  CAS  Google Scholar 

  • Tan X. L., Vanavichit A., Amornsilpa S. and Trangoonrung S. 1998. Genetic analysis of rice CMS-WA fertility restoration based on QTL mapping. Theor. Appl. Genet., 96: 994–999.

    Article  Google Scholar 

  • Tanhuanpaa P. K., Vilkki J. P. and Vilkki H. J. 1995a. Identification of a RAPD marker for palmitic acid concentration in the seed oil of spring turnip rape (Brassica rapa ssp. oleifera). Theor. Appl. Genet., 91: 477–480.

    Article  CAS  Google Scholar 

  • Tanksley S. D., Ganal M. W. and Martin G. B. 1995. Chromosome landing: A paradigm for map-based gene cloning in plant species with large genomes. Trends Genet., 11: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S. D., Ganal M. W. and Prince J. P. et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics, 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • Tanksley S. D. and Orton T. J. 1983. Isozymes in Plant Genetics and Breeding. Parts 1A and 1B. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids. Res., 17: 6463–6471.

    Article  PubMed  CAS  Google Scholar 

  • Teutonico R. A. and Osborn T. C. 1994. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor. Appl. Genet., 89: 885–892.

    Article  CAS  Google Scholar 

  • Teutonico R. A. and Osborn T. C. 1995. Mapping loci controlling vernalization, requirement in Brassica rapa. Theor. Appl. Genet., 91: 1279–1283.

    Article  CAS  Google Scholar 

  • Teutonico R. A., Yandell B. S., Satagopan J. M., Ferreira M. E., Palta J. P. and Osborn T. C. 1995. Genetic analysis and mapping of genes controlling freezing tolerance in oil seed Brassica. Mol. Breed., 1: 329–339.

    Article  CAS  Google Scholar 

  • Thorlby G., Veale E., Butcher K. and Warren G. 1999. Map positions of SFR genes in relation to other freezing-related genes of Arabidopsis thaliana. Plant J., 17: 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Torp A. M., Hansen A. L., Holme I. B. and Anderson S. B. 1998. Genetic markers for haploid formation in wheat anther culture. In: Proc. 9th Int. Wheat Genet. Symp., (ed. ) Slinkard A. E., Univ Saskatchewan, Saskatoon, 3: 159–161.

    Google Scholar 

  • Uzunova M., EckeW., Weissleder K. and Robbelen G. 1995. Mapping the genome of rapeseed (Brassica napus L) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor. Appl. Genet., 90: 194–204.

    Article  CAS  Google Scholar 

  • Valdes J. M., Tagle D. A. and Collins F. S. 1994. Islad rescue PCR: A rapid and efficient method for isolating transcribed sequences from yeast artificial chromosomes and cosmids. Proc. Natl. Acad. Sci., USA, 91: 5377–5381.

    CAS  Google Scholar 

  • Vallejos C. E., Sakiyama N. S. and Chase C. D. 1992. A molecular marker-based linkage map of Phaseolus vulgaris. Genetics, 131: 733–740.

    PubMed  CAS  Google Scholar 

  • Van Deynze A. E., Nelson J. C. and O’Donoughue L. S. et al. (9 authors). 1995. Comparative mapping in grasses. Oat relationships. Mol. Gen. Genet., 249: 349–356.

    Article  PubMed  Google Scholar 

  • Van Eck H. J., Jacobs J. M. E., Stam P., Ton J., Stickema W. J. and Jacobsen E. 1994. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics, 137: 303–309.

    PubMed  Google Scholar 

  • Varshney R. K., Prasad M., Roy J. K., Kumar N., Singh H., Dhaliwal H. S., Balyan H. S. and Gupta P. K. 2000. Identification of eight chromosomes and a microsatellite marker on IAS associated with QTL for grain weight in bread wheat. Theor. Appl. Genet., 100: 1290–1294.

    Article  CAS  Google Scholar 

  • Veldboom L. R., Lee M. and Woodman W. L. 1994. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor. Appl. Genet., 88: 7–16.

    Article  CAS  Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., Van Lee T., Homes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Walsh J. A., Sharpe A. G., Jenner C. E. and Lydiate D. J. 1999. Characterization of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TURBO 1. Theor. Appl. Genet., 99: 1149–1154.

    Article  CAS  Google Scholar 

  • Wang G. L., Mackill D. J., Bonman J. M., McCouch S. R., Champoux M. C. and Nelson R. J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 136: 1421–1434.

    PubMed  CAS  Google Scholar 

  • Weaver R., Helms C., Mishra S. K. and Donis-Keller H. 1992. Software for analysis and manipulation of genetic linkage data. Am. J. Hum. Genet., 50: 1267–1274.

    PubMed  CAS  Google Scholar 

  • Weber J. L. and May P. E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet., 44: 388–396.

    PubMed  CAS  Google Scholar 

  • Weeden N. L., Muehalbauer F. J. and Ladizinsky G. 1992. Extensive conservation of linkage relationships between and total genetic maps. J. Hered., 83: 123–129.

    Google Scholar 

  • Welsh J. and McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids. Res., 18: 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Whitkus R., Doebley J. F. and Lee M. 1992. Comparative genome mapping of sorghum and maize. Genetics, 132: 1119–1130.

    PubMed  CAS  Google Scholar 

  • Williams J. G. K., Kubelik A. R. and Livak K. J. et al. 1990. Oligonucleotide primers of arbitrary sequence amplify DNA polymorphisms which are useful as genetic markers. Nucl. Acids Res., 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. J., Fisher J. M. and Langridge P. 1994. Identification of RFLP markers linked to the cereal cyst nematode resistant gene (Cre) in wheat. Theor. Appl. Genet., 89: 927–930.

    Article  CAS  Google Scholar 

  • Wu K. K., Burnquist W., Sorrells M. E., Tew T. L., Moore P. H. and Tanksley S. D. 1992. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor. Appl. Genet., 83: 294–300.

    Article  Google Scholar 

  • Wu P., Zhang G. and Huang N. 1996. Identification of QTL controlling quantitative characters in rice using RFLP markers. Euphytica, 89: 349–354.

    CAS  Google Scholar 

  • Wu P., Zhang G., Ladha J. K., McCouch S. R. and Huang N. 1995. Molecular-marker-facilitated investigation on the ability to stimulate N2 fixation in the rhizosphere by irrigated rice plants. Theor. Appl. Genet., 91: 1177–1183.

    CAS  Google Scholar 

  • Xiao J., Li J., Yuan L. and Tanksley S. D. 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 140: 745–754.

    PubMed  CAS  Google Scholar 

  • Xu G. W., Magill C. W., Schertz K. F. and Hart G. E. 1994. A RFLP linkage map of Sorghum bicolor (L. ) Moench. Theor. Appl. Genet., 89: 139–145.

    Article  CAS  Google Scholar 

  • Yan J. Q., Zhu J., He C. X., Benmoussa M. and Wu P. 1998. Quantitative trait loci analysis for the developmental behaviour of tiller number in rice (Oryza sativa L. ). Theor. Appl. Genet., 97: 267–274.

    Article  CAS  Google Scholar 

  • Yano M., Harushima Y., Nagamura Y., Kurata N., Minobe Y. and Sasaki T. 1997. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor. Appl. Genet., 95: 1025–1032.

    Article  CAS  Google Scholar 

  • Yoshimura S., Yoshimura A., Iwata N., McCouch S. R., Abenes M. L., Baraoidan M. R., Mew T. W. and Nelson R. J. 1995a. Tagging and combining bacterial blight resistant genes in rice using RAPD and RFLP markers. Mol. Breed., 1: 375–387.

    Article  CAS  Google Scholar 

  • Yoshimura S., Yoshimura A., Nelson R. J., Mew T. W. and Iwata N. 1995b. Tagging Xa-1, the bacterial blight resistance gene in rice, by using RAPD markers. Breeding Sci., 45: 81–85.

    CAS  Google Scholar 

  • Yoshimura S., Yoshimura A., Saito A., Kishimoto N., Kawase M., Yano M., Nakagahra N., Ogawa T. and Iwata N. 1992. RFLP analysis of introgressed segments in three near-isogenic lines of rice for bacterial blight resistance genes, Xa-1, Xa-3 and Xa-4. Japan J. Genet., 67: 29–37.

    Article  CAS  Google Scholar 

  • Yoshimura S., Umehara Y., Kurata N., Nagamura Y., Sasaki T., Minobe Y. and Iwata N. 1996. Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistance gene in rice. Theor. Appl. Genet., 93: 117–122.

    Article  CAS  Google Scholar 

  • Young N. D., Danesh D., Menancio-Hautea D. and Kumar L. 1993. Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor. Appl. Genet., 87: 243–249.

    Article  CAS  Google Scholar 

  • Young N. D., Kumar L., Menancio-Hautea D., Danesh D., Talekar N. S., Shanmugasundaraum S. and Kim D. H. 1992. RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor. Appl. Genet., 84: 839–844.

    Article  CAS  Google Scholar 

  • Young N. D. and Tanksley S. D. 1989. RFLP analysis of the size of chromosomal segments retained around the Tm-2a locus of tomato during back-cross breeding. Theor. Appl. Genet., 77: 353–359.

    Article  CAS  Google Scholar 

  • Yu Z. H. 1991. Molecular mapping of rice (Oryza sativaL.) genes via linkage to restriction fragment polymorphism (RFLP) markers. Cornell University, Ithaca, New York (Ph. D. Thesis).

    Google Scholar 

  • Yu Z. H., Mackill D. J., Bonman J. M. and Tanksley S. D. 1991. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet., 81: 471–476.

    Article  Google Scholar 

  • Yu Y. G., Saghai-Maroof M. A., Buss G. R., Maughan P. J. and Tolin S. A. 1994. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 84: 60–64.

    Article  CAS  Google Scholar 

  • Zeng Z. B. 1994. Precision mapping of quantitative trait loci. Genetics, 136: 1457–1468.

    PubMed  CAS  Google Scholar 

  • Zhang Q., Liu K. D., Yang G. P., Saghai-Maroof M. A., Xu C. G. and Zhou Z. Q. 1997. Molecular marker diversity and hybrid sterility in indica-japonica rice crosses. Theor. Appl. Genet., 95: 112–118.

    Article  CAS  Google Scholar 

  • Zhang Q. F., Shen B. S., Dai X. K., Mei M. H., Saghai-Maroof M. A. and Li Z. B. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc. Natl. Acad. Sci, USA, 91: 8675–8679.

    CAS  Google Scholar 

  • Ziegelhoffer E. C., Medrano L. J. and Meyerowitz E. M. 2000. Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc. Natl. Acad. Sci, USA, 97: 7633–7638.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kole, C., Gupta, P.K. (2004). Genome Mapping and Map Based Cloning. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics