Skip to main content

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is called camel’s crop and it is a major dryland cereal crop which has multipurpose uses like food, feed, fodder, and bioethanol production. It is nutritionally superior to other fine cereals such as rice and wheat with high fiber and mineral content. As a model for the tropical grasses, sorghum is a logical complement to rice. Sorghum is a representative of tropical grasses in that it has C4 photosynthesis with biochemical and morphological specializations that improve net carbon assimilation at high temperatures. Sorghum and maize share a common ancestor due to polyploidization and repetitive DNA propagation; however, the sorghum genome is much smaller (736 Mbp) and was completely sequenced in 2009. Sorghum is an even closer relative of sugarcane, arguably the most important biomass/biofuel crop worldwide. Gene flow between cultivated plants and their wild/weedy relatives play an important role in structuring the genetic variability within and among populations. The consequences of gene flow can contribute to the scientific basis (risk assessment) for managing agricultural systems, understanding evolutionary processes, and designing in situ conservation measures for genetic resources and using these resources to secure current and future plant breeding programs. Gene flow is of practical concern in crop breeding, weed evolution, or transgene movement from crops to weeds. While gene flow might pertain to seed movement with regard to volunteer plants or type “contamination,” most research has been performed on assessing gene flow via pollen movement, with transgenes being important and convenient markers to assay. Sorghum germplasm screening for various antioxidants and nutritional qualities which might be helpful in control of various diseases is now-a-days very easy with the help of next-generation sequencing (NGS) techniques and other new sequencing strategies like genotyping by sequencing (GBS), digital genotyping (DG), etc. Keeping in view its genetic variability, a known genomic sequence, and a good seed industry, utilization of sorghum within the health food market and the bioenergy arena will make sorghum a promising renewable resource for generations to come. The present chapter reviews the evolutionary aspects of sorghum with special emphasis on the gene pool and flow for crop improvement, considering levels of diversity, traits of importance, and interspecific hybridization and concludes with molecular aspects and future prospects of sorghum breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalo G, Tongoona P, Derera J, Edema R (2009) A comparative analysis of conventional and marker assisted selection methods in breeding for maize streak virus (MSV) resistance in maize. Crop Sci 49:509–520

    Article  Google Scholar 

  • Aggarwal PK (2008) Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian J Agri Sci 78:911–919

    Google Scholar 

  • Andersen JR, Luebberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC (2005) The use of CEN38 in assessing evolutionary relationships in the genus Sorghum. M.S. Thesis. Texas A&M University, College Station

    Google Scholar 

  • Ariyadasa R, Stein N (2012) Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol. doi:10.1155/2012/184854

    PubMed  PubMed Central  Google Scholar 

  • Arnold MJ (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol 13:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Arriola PE, Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poaceae): spontaneous interspecific hybridization between johnson grass, Sorghum halepense, and crop sorghum S. bicolor. Amer J Botany 83(9):1153–1160

    Article  Google Scholar 

  • Asea G, Vivek BS, Lipps PE, Pratt RC (2012) Genetic gain and cost efficiency of marker-assisted selection of maize for improved resistance to multiple foliar pathogens. Mol Breed 29:515–527

    Article  Google Scholar 

  • Audilakshmi S, Stenhouse JW, Reddy TP, Prasad MVR (1999) Grain mould resistance and associated characters of sorghum genotypes. Euphytica 107:91–103

    Article  Google Scholar 

  • Aydin S, Rooney WL, Miller FR (1997) Identification and characterization of the Ma5 and Ma6 maturity loci in sorghum. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, INTSORMIL and ICRISAT, 22–27 September 1996. Lubbock, USA, pp 641–642

    Google Scholar 

  • Ayyanger GNR, Ponnaiya BWX (1941) Studies in Para-Sorghum-the group with bearded nodes. Proc Ind Acad Sci 14:17–24

    Google Scholar 

  • Azhar FM, McNeilly T (1988) The genetic basis for salt tolerance in Sorghum bicolor (L) Moench seedlings. Plant Breed 101:114–121

    Article  CAS  Google Scholar 

  • Bapat DR, Mote UN (1982) Sources of shoot fly resistance in Sorghum. J Maharashtra Agri Uni 7:238–240

    Google Scholar 

  • Barabaschi D, Guerra D, Lacrima K et al (2012) Emerging knowledge from genome sequencing of crop species. Mol Biotechnol 50:250–266

    Article  CAS  PubMed  Google Scholar 

  • Barclay A (2004) Ferel Play. Rice Today, pp 15–19

    Google Scholar 

  • Barnaud A, Deu M, Garine E et al (2009) A weed–crop complex in sorghum: the dynamics of genetic diversity in a traditional farming system. Amer J Bot 96(10):1869–1879

    Article  CAS  Google Scholar 

  • Bauhini C (1658) Theatri botanici sive historia plantarum. Basel

    Google Scholar 

  • Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6, e19315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker-Dillingen J (1927) Handbuch des Getreidebaues einschließlich Mais, Hirse und Buchweizen. Paul Parey, Berlin

    Google Scholar 

  • Beissinger TM, Hirsch CN, Sekhon RS et al (2013) Marker density and read-depth for genotyping populations using genotyping-by-sequencing. Genetics Online, published 10.1534/genetics.112.147710

  • Bekele E (2004) Electric field mediated fusion of Erugrostis Tef and Sorghum Bicolor protoplasts and their electroporation conditions. Hereditas 123(3):199–203

    Article  Google Scholar 

  • Bennett HW, Merwine NC (1966) Meiotic behavior of a Hodo Sorgo x Johnsongrass hybrid. Crop Sci 6:127–131

    Article  Google Scholar 

  • Bernard S, Jewell DC (1985) Crossing maize with sorghum, Tripsacum and millet: the products and their level of development following pollination. Theor Appl Genet 70(5):474–483

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AG, Endrizzi JE, Reeves RG (1960) Origin of Johnson grass. J Hered 51:107–110

    Google Scholar 

  • Bhosale SU, Benjamin S, Frederick H et al (2012) Association analysis of photoperiodic flowering time genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol 12:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1990) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  Google Scholar 

  • Borad PK, Mittal VP (1983) Assessment of losses caused by pest complex to sorghum hybrid CSH 5. In: Krishnamurthy Rao BH, Murthy KSRK (eds) Crop losses due to insect pests. Entomological Society of India, New Delhi, pp 271–278

    Google Scholar 

  • Borlaug NE (2002) Feeding a world of 10 billion people: the miracle ahead. Vitro Cellular and Developmental Biology-Plant 38(2):221–228

    Article  Google Scholar 

  • Borrell AK, Hammer GL, Henzel RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Brooking IR (1971) Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. I. Timing of the stage of sensitivity. Aust J Plant Physiol 3:589–596

    Article  Google Scholar 

  • Brooking IR (1979) Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. II. Genotypicdifferences in sensitivity. Aust J Plant Physiol 6:143–147

    Article  Google Scholar 

  • Brown DCW, Thorpe TA (1986) Plant regeneration by organogenesis. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 3. Acedemic Press, New York, pp 49–65

    Google Scholar 

  • Brown SM, Hopkins MS, Mitchell SE et al (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198

    Article  CAS  PubMed  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula, vol 1, 2nd edn. A.H. Government of Malaysia and Singapore, Kuala Lumpur

    Google Scholar 

  • Burnham C (1962) Discussions in cytogenetics. Burgress, Minneapolis

    Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. PNAS 69:2292–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casady AJ, Anderson KL (1952) Hybridization, cytological and inheritance studies of a sorghum cross – autotetraploid sudangrass x (Johnsongrass x 4n sudangrass). Agronomy 44:189–194

    Article  Google Scholar 

  • CBD (1992) Convention on biological diversity. Text and Annexes Secretariat of Convention on Biological Diversity , Monetreal

    Google Scholar 

  • Celarier RP (1958) Cytotaxonomy of the Andropogoneae. HI. Subtribe Sorgheae, Genus Sorghum. Cytologia [Tokyo] 23:395–417

    Article  Google Scholar 

  • Chalker-Scott L, Fuchigami LH (1989) The role of phenolic compounds in plant stress responses. In: Paul HL (ed) Low-temperature stress physiology in crops. CRC Press, Boca Raton, pp 27–40

    Google Scholar 

  • Chase C, Babay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Kluwer Academic Publishers, Dordrecht, pp 593–622

    Chapter  Google Scholar 

  • Chen X, Cho YG, McCouch SR (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genom 268:331–343

    Article  CAS  Google Scholar 

  • Chen R, Davydov EV, Sirota M, Butte AJ (2010) Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association. PLoS One 5(10):e13574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Childs KL, Cordonnier-Pratt MM, Pratt LH, Morgan PW (1992) Genetic regulation of development in Sorghum bicolo. VII. m3 R flowering mutant lacks a phytochrome that predominates in green tissue. Plant Physiol 99:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittenden ML, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor and S. Propinquum, suitable for high density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Bohra SP, Swarnkar PL (1993) Heat shock responses in sorghum. J Phytol Res 6:39–42

    Google Scholar 

  • Clayton WD (1961) Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorgum Adans. (Gramineae). Taxon 10(8):242

    Article  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum grasses of the world, Kew Bulletin Addition Series XIII. Royal Botanic Gardens, Kew, pp 338–345

    Google Scholar 

  • Clerget B, Dingkuhn M, Gozé E, Rattunde HFW, Ney B (2008) Variability of phyllochron, plastochron and rate of increase in height in photoperiod sensitive Sorghum varieties. Ann Bot 101:579–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocking EC (1960) A method for isolation of plant protoplast and vacuoles. Nature 187:962–963

    Article  Google Scholar 

  • Cocking EC, George D, Price-Jones JJ, Power JB (1977) Selection procedures for the production of interspecific somatic hybrids of Petunia hybridae and P. parodii. II Albino Complextion selection. Plant Sci Letter 10:2–12

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Colton LM, Groza HI, Wielgus SM, Jiang S (2006) Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Sci 46:589–594

    Article  CAS  Google Scholar 

  • Cordeiro GM, Pan YB, Henry RJ (2006) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci 165:181–189

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Ann Rev Cell Dev Biol 13:171–201

    Article  CAS  Google Scholar 

  • Cox TS, Bender M, Picone C et al (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  • Crasta RR, Xu W, Rosenow DT, Mullet JE, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association of QTLs influencing premature senescence and maturity. Mol Genet Genom 262:579–588

    Article  CAS  Google Scholar 

  • Cui XQ, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile, T-cytoplasm maize. Science 272:1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg JA (2000) Classification and characterization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 99–130

    Google Scholar 

  • Dahlberg JA, Wasylikowa K (1996) Image and statistical analyses of early sorghum remains (8000 B. C.) from the Nabta Playa archaeological site in the Western Desert, southern Egypt. Veg Hist Archaeobot 5:293–299

    Article  Google Scholar 

  • Damania A, Valkoun J, Willcox G, Qualset C (1998) The origins of agriculture and crop domestication, Ist ed. International center fro agricultural research in Dry Areas, Aleppo, Syria

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe CL (2005) Plant protoplasts: status and biological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira EJ, dos Silva AS, de Carvalho FM, dos Santos LF, Costa JL, deAmorim VBO, Dantas JLL (2010) Polymorphicmicrosatellite marker set for Carica papaya L. and its use in molecular-assisted selection. Euphytica 173:279–287

    Article  CAS  Google Scholar 

  • de Wet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Amer J Bot 65(4):477–484

    Article  Google Scholar 

  • de Wet JMJ, Huckabay JP (1967) The origin of sorghum bicolor II. Distribution and domestication. Evolution 21:787–802

    Article  Google Scholar 

  • de Wet JMJ, Price EG (1976) Plant domestication and indigenous African agriculture. In: Harlan JR, de Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton, The Hague, pp 453–464

    Google Scholar 

  • de Wet JMJ, Harlan JR, Price EG (1970) Origin of variability in the spontanea complex of Sorghum bicolor. Amer J Bot 57(6):704–707

    Article  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S-macrospermum, the Australian native species most closely related to the cultivated S-bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100(5):975–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Doggett H (1965) Disruptive section in crop development. Nature 4981:279–280

    Article  Google Scholar 

  • Doggett J (1970) Sorghum (Tropical Agriculture Series) Longmans. Green and Co., London

    Google Scholar 

  • Doggett H (1976) Sorghum. In: Simmonds NW (ed) Evolution of crop plants. Longman Press, Essex, pp 112–117

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Wiley, New York

    Google Scholar 

  • Downs RW, Marshall DR (1971) Low temperature induced male sterility in grain sorghum. Aust J Exp Agric Ani Husb 11:352–356

    Article  Google Scholar 

  • Dufour P, Deu M, Grivet L et al (1997) Construction of a composite sorghum genome and comparasion with sugarcane a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrid development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in cultivar development, part 1. CSSA Special Publications 17

    Google Scholar 

  • Durra BN, Stebbins GL (1952) A polyhaploid obtained from a hybrid derivative of Sorghum halepense x S. vulgare var. sudanense. Genetics 37:369–374

    Google Scholar 

  • Dweikat I (2005) A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnson grass weed Sorghum halepense. Mol Breed 16:93–101

    Article  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol 8:2–9

    Article  CAS  Google Scholar 

  • Eeckhaut T, Huylenbroeck JV, Van Laere K, Gent EV (2006) Proceedings of the Vth international symposium on in vitro culture and horticulture breeding, 1–2:117–126

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Amer J Bot 99:175–185

    Article  CAS  Google Scholar 

  • Ejeta G, Butler L, Hess D, Vogler R (1991) Genetic and breeding strategies for striga resistance in sorghum. In: Ransom J, Musselman LJ, Worshamand A, Parker C, (eds) Proceedings of the 5th international symposium on parasitic weeds, CIMMYT Nairobi, p 539

    Google Scholar 

  • Ejeta G, Butler L, Babiker A (1992) New approaches to the control of striga. In: Ejeta G, Butler L, Babiker (eds) Striga research at Purdue Bulletin, pp 11–13

    Google Scholar 

  • Ejeta GP, Tuinstra GM, Grote E et al (2000) Application of molecular markers in plant breeding. In: Haussmann B, Geiger H, Hess D, Hash C, Bramel-Cox P (eds) Training manual for a seminar held at IITA, Ibadan, Nigeria, from 16–17 August 1999. International Crops Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India

    Google Scholar 

  • Ellstrand NC (2003) Current knowledge on gene flow in plants: implications for transgene flow. Phil Trans R Soc Lond B 358:1163–1170

    Article  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by sequencing (GBS) approach for high diversity species. PLoS One 6, e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157

    Article  CAS  Google Scholar 

  • Endrizzi JE (1957) Cytological studies of some species and hybrids in the Eusorghums. Bot Gaz 119:1–10

    Article  Google Scholar 

  • Endrizzi JE, Morgan DT (1955) Chromosomal interchanges and evidence for duplication in haploid Sorghum vulgare. J Hered 46:201–208

    Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Erichsen AW, Ross JG (1963) Irregularities at microsporogenesis in colchicine-induced male-sterile mutants in Sorghum vulgare Pers. Crop Sci 3:481–483

    Article  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) A SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome 110:453–464

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Physiol Plant Mol Biol 54:357–374

    Article  CAS  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Org 82:317–342

    Article  CAS  Google Scholar 

  • Franklin B (1757) Letter to Mr. Ward from Benjamin Franklin on March 24, 1757. Original letter held in trust with the Nantucket alheneum, Nantucket 02554

    Google Scholar 

  • Franzmann BA, Hardy AT (1996) Testing the host status of Australian indigenous sorghums for the sorghum midge. In: Foale MA, Henzell RG, Kneip JF (eds) Proceedings of the third Australian sorghum conference. Tamworth, NSW, Australia, pp 365–367

    Google Scholar 

  • Gamar YA, Mohamed AH (2013) Introgression of Striga resistance genes into a Sudanese Sorghum cultivar, Tabat, using marker assisted selection (MAS). Greener J Agri Sci 3(7):550–556

    Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Bio 12:211–217

    Article  CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol 3:591–599

    Article  CAS  Google Scholar 

  • Gao J, Xia B, Luo F et al (2013) Marker-assisted breeding for rf1, a nuclear gene controlling A1 CMS in sorghum (Sorghum bicolor L. Moench). Euphytica 193(3):383–390

    Article  CAS  Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361

    Google Scholar 

  • Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  • Gleba Y, Sytnik K (1984) Protoplast fusion: genetic engineering in higher plants. In: Shoeman R (ed) Monographs on theoretical and applied genetics. Springer, Berlin, pp 115–161

    Google Scholar 

  • Godwin ID (2005) Sorghum genetic engineering: Current status and prospectus. In: Seetharama N, Godwin I (eds) Sorghum tissue culture and transformation. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 1–8

    Google Scholar 

  • Gomez M, Islam-Faridi MN, Zwick M et al (1998) Tetraploid nature of Sorghum bicolor (L.) Moench. J Hered 89:188–190

    Article  Google Scholar 

  • Gonzalez-Martınez SC, Robledo-Arnuncio JJ, Collada C, Dıaz A, Williams CG, Alıa R (2004) Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 109:103–111

    Article  PubMed  CAS  Google Scholar 

  • Gowda PSB, Xu GW, Frederiksen RA, Magill CW (1995) DNA markers for downey mildew resistance genes in sorghum. Genome 38:823–826

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Yang S, Rupe M et al (2008) Genome-wide allelespecific expression analysis using massively parallel signature sequencing (MPSS (TM)) reveals cis- and trans-effects on gene expression in maize hybrid meristem issue. Plant Mol Biol 66:551–566

    Article  CAS  PubMed  Google Scholar 

  • Habyarimana E, Lorenzoni C, Busconi M (2010) Search for new stay- green sources in Sorghum bicolor (L.) Moench. Maydica 55:187–194

    Google Scholar 

  • Hadley HH (1953) Cytological relationships between Sorghum vulgare and S. halepense. Agron J 45:139–143

    Article  Google Scholar 

  • Hadley HH, Mahan JL (1956) The cytogenetic behavior of the progeny from a backcross (Sorghum vulgare x S. halepense x S. vulgare). Agron J 48:102–106

    Article  Google Scholar 

  • Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy, Madison

    Google Scholar 

  • Harlan JR (1995) The living fields: our agricultural heritage. Cambridge University Press, Cambridge

    Google Scholar 

  • Harlan JR, deWet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harlan JR, deWet JMJ (1972) A simplified classification of cultivated sorghums. Crop Sci 12:172–176

    Article  Google Scholar 

  • Harlan JR, Stemler A (1976) The races of Sorghum in Africa. In: Harlan JR, de Wet JMJ, Stemler A (eds) Origins of African plant domestication. Mouton, The Hague, pp 465–478

    Chapter  Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–351

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ, Stemler ABL (1976) Origins of African plant domestication. Mouton, The Hague

    Book  Google Scholar 

  • Harris K, Subudhi PK, Borrell A et al (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • Haussmann BIG, Boureima SS, Kassari IA, Moumouni KH, Boubacar A (2007) Two mechanisms of adaptation to climate variability in West African pearl millet landraces – a preliminary assessment. SAT eJournal 3(1). http://ejournal.icrisat.org/

  • Hawkes J (1973) The first great civilizations. Penguin, Hammondsworth

    Google Scholar 

  • Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Experiment Bio 213:921–933

    Article  CAS  Google Scholar 

  • Henry RJ (2012) Next generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics 11:51–56

    Article  CAS  PubMed  Google Scholar 

  • Hillel D, Rosenzweig C (2002) Desertification in relation to climate variability and change. Adv Agron 77:1–38

    Article  Google Scholar 

  • Hodnett GL, Burson BL, Rooney WL, Dillon SL, Price HJ (2005) Pollen-pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409

    Article  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, pp 54–61

    Google Scholar 

  • House LR, Nelson OS (1985) Tracer study of pollen-tube growth in cross-sterile maize. J Hered 49:18–21

    Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelgas VC, Lawrence P, Adkins SW, Mufti MU, Goodwin ID (1996) Utilisation of the Australian native species for sorghum improvement. In: Foale MA, Henzell RG (eds) Proceedings of the Australian Sorghum Conference. 3rd, Tamsworth, NSW. 20–22 February 1996, Occasional Publ. 93. Aust Inst Agric Sci, Melbourne, VIC, pp 369–375

    Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A 87:4251–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten D, Cannon S, Song Q et al (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ICRISAT (1992) Medium term plan. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128(3334):1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Jagtap V, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  • Janakiammal EK, Singh TSN (1936) A prelimainary note on a sew Saccharum-Sorghum hybrid. Indian J Agric Sci 4:1050

    Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and famer selection of new genetic combinations in agro ecosystems. Mol Ecol 8:159–173

    Article  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23

    Article  Google Scholar 

  • Jin J, Liu K, Wang G, Mi L, Shen Z, Chen X, Herbert SJ (2010) Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Field Crops Res 115:116–123

    Article  Google Scholar 

  • Jordan SA, Humphries P (1994) Single nucleotide polymorphism in exon 2 of the BCP gene on 7q31-q35. Human Mol Genet 3:1909–1915

    Article  Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    CAS  PubMed  Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120(7):1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Jordan DR, Klein RR, Sakrewski KG, Henzell RG, Klein PE, Mace ES (2011) Mapping and characterization of Rf 5: a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 123(3):383–396

    Article  CAS  PubMed  Google Scholar 

  • Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blightresistance and basmati quality characteristics by phenotypicand molecular marker-assisted selection in rice. Mol Breed 13:377–387

    Article  CAS  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy Sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1975) A method for high frequency intergeneric fusion of plant protoplast. Planta 115:355–367

    Article  Google Scholar 

  • Kao KN, Constabel F, Michayluk MR, Gamborg OL (1974) Plant protoplast fusion and growth of intergeneric hybrid cells. Planta (Berl) 120:215–227

    Article  CAS  Google Scholar 

  • Karper RE, Chisholm AT (1936) Chromosome numbers in sorghum. Amer J Bot 23:369–374

    Article  Google Scholar 

  • Karunakar RI, Narayana YD, Pande S, Mughogho LK, Singh SD (1994) Evaluation of wild and weedy sorghums for downy mildew resistance. International Sorghum and Millets Newsletter 35:2–11

    Google Scholar 

  • Kassahun B, Bidinger FR, Hash CT, Kuruvinashetti MS (2009) Stay green expression in early generation sorghum (Sorghum bicolor L. Moench) QTL introgression lines. Euphytica 172:351–362

    Article  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen H (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Func Genomics 2:38–50

    Article  CAS  Google Scholar 

  • Kimber C (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederickson RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 3–98

    Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW et al (2005) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  Google Scholar 

  • Komolong B, Chakraborty S, Ryley M, Yates D (2002) Identity and genetic diversity of the sorghum ergot pathogen in Australia. Aust J Agril Res 53:621–628

    Article  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Körnicke F (1885) Die Arten und Varietäten des Getreides. In: Handbuch des Getreidebaues. Verlag von Emil Strauss, Band 1, Bonn

    Google Scholar 

  • Korzun V (2005) Molecular markers and their application. In: Cereals breeding. www.fao.org/BIOTECH/docs/korzun.pdf

  • Kouressy M, Niangado O, Dembélé T, Vaksmann M, Trouche G, Reyniers FN (1998) La sélection de sorghos photopériodiques In: Bacci L, Reyniers FN (eds) Le Futur des Céréales Photopériodiques pour une production durable en Afrique Tropicale semi-Aride. CeSIA/CIRAD, pp 247–262

    Google Scholar 

  • Kresovich S, Barbazuk B, Bedell JA et al (2005) Toward Sequencing the Sorghum Genome. A US National Science Foundation-Sponsored Workshop Report. Plant Physiol 138:1898–1902

    Article  CAS  Google Scholar 

  • Kuchel H, Guoyou Y, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker assisted wheat breeding strategy. Mol Breed 16:67–78

    Article  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies S (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182

    Article  CAS  PubMed  Google Scholar 

  • Kumar AA, Reddy BVS, Reddy CR, Blümmel M, Rao PS, Ramaiah B, Reddy PS (2010) Enhancing the harvest window for supply chain management of sweet sorghum for ethanol production, E-Journal of SAT Agricultural Research, p 8

    Google Scholar 

  • Küster E (1909) Uber die Verschmelzung nackter Protoplasten. Ber Dtsch Bot Gesell 27:589–598

    Google Scholar 

  • Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agri Res 52(12):1043–1077

    Article  CAS  Google Scholar 

  • Laurie D, Bennett MD (1989) Genetic variation in Sorghum for the inhibition of maize pollen tube growth. Ann Bot 64:675–681

    Google Scholar 

  • Lazarides M, Hacker JB, Andrew MH (1991) Taxonomy, cytology and ecology of indigenous Australian sorghums (Sorghum Moench: Andropogoneae: Poaceae). Aust Syst Bot 4:591–635

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Vo1. I. Chilling, freezing, and high temperature stresses. Academic, New York

    Google Scholar 

  • Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xu X, Deng X (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Org Cult 82:19–44

    Article  CAS  Google Scholar 

  • Lo SCC, De Verdier K, Nicholson RL (1999) Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiol Mol Plant Pathol 55:263–273

    Article  CAS  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improved crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Luthra YP, Ghandi SK, Joshi UN, Arora SK (1988) Total phenols and their oxidative enzymes in sorghum leaves resistant and susceptible to Ramulispora sorghicola Harris. Acta Phytopathol Entomol 23:393–400

    CAS  Google Scholar 

  • Mace ES, Sing V, Van Oosteron EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Tai S, Gilding EK et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Comm 4:2320. doi:10.1038/ncomms3320

    Google Scholar 

  • Magoon ML, Shambulingappa KG (1961) Karyomorphology of sorghum propinquum and its bearing on the origin of 40-chromosome sorghum. Chromosoma (Berl) 12:460–465

    Article  CAS  Google Scholar 

  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas Agric Exp Stn Bull, p 1454

    Google Scholar 

  • Mardis ER (2010) The $1000 genome, the $100,000 analysis? Genome Medicine 2:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariac C, Robert T, Allinne C et al (2006a) Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theor Appl Genet 113:1003–1004

    Article  CAS  PubMed  Google Scholar 

  • Mariac C, Luong V, Kapran I et al (2006b) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  CAS  PubMed  Google Scholar 

  • Maroof MAS, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin SA (2008) Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. Crop Sci 48:517–526

    Article  CAS  Google Scholar 

  • Martienssen TA, Rabinowicz PD, O’Shaughnesssy A (2004) Sequencing the maize genome. Curr Opin Plant Biol 7:102–107

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Leonard WH (1949) Principles of field crop production. McMillan, New York

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Jesus Sanchez GS, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99(9):6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maunder AB, Pickett RC (1959) The genetic inheritance of cytoplasmic-genetic male sterility in grain sorghum. Agron J 51:47–49

    Article  Google Scholar 

  • Maxted N (2006) UK landraces – a hidden resource? Plant Talk 44:8

    Google Scholar 

  • Mayer AM, Harel E (1991) Phenoloxidases and their significance in fruit and vegetables. In: Fox PF (ed) Food enzymology, vol 1. Elsevier, London, pp 373–398

    Google Scholar 

  • McWhorter CG (1989) History, biology, and control of Johnsongrass. Rev Weed Sci 4:85–121

    CAS  Google Scholar 

  • Melake-Berhan A, Hulbert SH, Butler LG, Bennetzen JL (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604

    Article  Google Scholar 

  • Melake-Berhan A, Ejeta LG, Menkir G (1996) Grain mold resistance, polyphenol accumulation in sorghum. J Agric Food Chem 44:2428–2434

    Article  CAS  Google Scholar 

  • Melchers G, Labib G (1974) Somatic hybridization of plants by fusion of protoplasts. Selection of light resistant hybrids of “haploid” light sensitive varieties of tobacco. Mol Gen Genet 135:277–294

    Article  Google Scholar 

  • Meredith Jr. WR (1991) Contributions of introductions to cotton improvement. In: Shands HL , Wiesner LE (eds.) Use of plant introductions in cultivar development, part 1. CSSA Special Publications 17, pp 127–146

    Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathol 102(6):560–566

    Article  Google Scholar 

  • Miller DA, Pickett RC (1964) Inheritance of partial male-fertilityin Sorghum vulgare Pers. Crop Sci 4:1–4

    Article  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Mohan S, Purushothaman D, Jayaraj S, Rangarajan AV (1988) Phenylalanine ammonia lyase activity in the roots of Sorghum bicolor (L.) inoculated with Azospirillum. Curr Sci 57:492–493

    CAS  Google Scholar 

  • Morishige DT, Klein PE, Hilley JL, Sahraeian SME, Sharma A, Mullet JE (2013) Digital genotyping of sorghum – a diverse plant species with a large repeat-rich genome. BMC Genom 14:448–467

    Article  CAS  Google Scholar 

  • Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Patterson AH (2005) Crop-to-weed introgression has impacted allelic composition of Johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. PNAS 110(2):453–458

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE, Klein RR, Klein PE (2001) Sorghum bicolor- an important species for comparative grass genomics and a source of beneficial genes for agriculture. Curr Opin Plant Biol 5:118–121

    Article  Google Scholar 

  • Murdock GF (1959) Africa: its peoples and their cultural history. McGraw-Hill, London

    Google Scholar 

  • Mutegi E, Sagnard F, Muraya M et al (2010) Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genet Resour Crop Evol 57:243–253

    Article  Google Scholar 

  • Nair NV (1999) Production and cyto-morphological analysis of intergeneric hybrids of Sorghum x Saccharum. Euphytica 108:187–191

    Article  Google Scholar 

  • Neya A, Le Normand M (1998) Responses of sorghum genotypes to leaf anthracnose (Collelotrichum graminicola) under field conditions in Burkina Faso. Crop Prot 17:47–53

    Article  Google Scholar 

  • Niangado O (2001) The state of millet diversity and its use in West Africa. In: Cooper HD, Spillane C, Hodgin T (eds) Broadening the genetic base of crop production. IPGRI/FAO, Rome, pp 147–157

    Chapter  Google Scholar 

  • Ortiz R, Ruia-Tapia EN, Mijica-Sanchez A (1998) Sampling strategy of a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    CAS  PubMed  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH (1996) An historical perseptive. In: Paterson AH (ed) Genome mapping in plants. Academic, Austin, pp 1–5

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lin YRLZ, Schertz KF et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci 101:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peacock JM (1982) Response and tolerance of sorghum to temperature stress. In: House LR et al. (eds) Sorghum in the eighties. Proceedings of the International Symposium on Sorghum, 2–7 November 1981. ICRISAT, Patancheru, India, pp 143–160

    Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebly J, Whitkus R (1994) Construction of a RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  CAS  PubMed  Google Scholar 

  • Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 backcross generations of S. bicolor x S. halepense hybrids. Can J Bot 72:468–474

    Article  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  CAS  PubMed  Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Rooney WL (2005) A Sorghum bicolor x S. macrospermum hybrid recovered by embryo rescue and culture. Aust J Bot 53:579–582

    Article  Google Scholar 

  • Pring DR, Tang HV, Howad W, Kempken F (1999) A unique two-gene gametophytic male sterility system in Sorghum involving a possible role of RNA editing in fertility restoration. J Hered 90:386–393

    Article  CAS  PubMed  Google Scholar 

  • Proteres R (1951) Une cereal mineure cultivee dans I’Quest-Africain (Brachlaria deflexa C.E. Hubbard. Var.sativa nov. var.). L’Agronomique Tropicale 6:39–42

    Google Scholar 

  • Quinby JR (1974) Sorghum improvement and the genetics of growth. Texas A&M University Press, College Station

    Google Scholar 

  • Quintero PV, Anaya-López JL, Zamarripa-Colmenero A (2012) Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers. Pesq agropec bras, Brasília 47(8):1095–1102

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5(2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Ramiah KV (1987) Breeding cereal grains to with-weed. In: Musslemann LJ (ed) Parasitic weeds in agriculture, vol 1. CRC Press, Boca Raton, pp 227–242

    Google Scholar 

  • Razdan MK (2003) Introduction to plant tissue culture. Science Publishers, Enfield

    Google Scholar 

  • Reddy BVS, Rai KN, Sarma NP, Kumar ISH, Saxena KB (2003) Cytoplasmic-nuclear male sterility: origin, evaluation, and utilization in hybrid development. In: Jain HK, Kharkwal MC (eds) Plant breeding: Mendelian to molecular approaches. Narosa Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  • Riggs ED, Wang S, Singh RJ, Hymowitz T (1998) Possible transfer of resistance to Heterodera glycines from Glycine tomentella to Glycine max. J Nematol 30(4):547–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Rosenow DT, Clark LE (1995) Drought and lodging resistance for a quality sorghum crop. In: Proceedings of the 5th annual corn and sorghum industry research conference (Chicago, IL, 6–7 December 1995), American Seed Trade Association, Chicago, pp 82–97

    Google Scholar 

  • Rosenow DT, Ejeta G, Clark LE, Gilbert ML, Henzell RG, Borrell AK, Muchow RC (1996) Breeding for pre- and post-flowering drought stress resistance in sorghum. In: Rosenow DT, Yohe JM (eds) Proceedings of the international conference on genetic improvement of sorghum and pearl millet (Lubbock, TX, 22–27 September 1996), ICRISAT, Lubbock, India, pp 400–411

    Google Scholar 

  • Sabadin PK, Malosetti M, Boer M et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124(8):1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Sagnard F, Deu M, Dembe′le D′k et al (2011) Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild–weedy–crop complex in a western African region. Theor Appl Genet doi. doi:10.1007/s00122-011-1662-0

    Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Bio 48:713–726

    Article  CAS  Google Scholar 

  • Sangduen N, Hanna WW (1984) Chromosome and fertility studies on reciprocal crosses between two species of autotetraploid sorghum Sorghum bicolor (L.) Moench and S. halepense (L.) Pers. J Hered 75:293–296

    Google Scholar 

  • Sattari M, Kathiresan A, Gregorio GB, Hernandez JE, Nas TM, Virmani SS (2007) Development and use of a two-genemarker-aided selection system for fertility restorer genes in rice. Euphytica 153:35–42

    Article  CAS  Google Scholar 

  • Sávoly S (1921) A seprőczirok termesztése és a czirokseprő készítése házilag. Frankli-Társulat, Press, Boca Raton

    Google Scholar 

  • Schecter Y, de Wet JMJ (1975) Comparative electrophoresis and isozyme analysis of seed proteins from cultivated races of sorghum. Amer J Bot 62:254–261

    Article  Google Scholar 

  • Schertz KF, Sotomayor-Rios A, Torres-Cardona S (1989) Cytoplasmic-nuclear male sterility: opportunities inbreeding and genetics. Proc Grain Sorghum Res Utility Conf 16:175–186

    Google Scholar 

  • Schnable PS, Wise RP (1996) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Sci 3(5):175–182

    Article  Google Scholar 

  • Sears ER (1993) Use of radiation to transfer alien chromosome segments to wheat. Crop Sci 33:897–901

    Article  Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma DC, Forsberg RA (1977) Spontaneous and induced interspecific gene transfer for crown rust resistance in Avena. Crop Sci 17:855–860

    Article  Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Ent 125:109–114

    Article  Google Scholar 

  • Sharma HC, Hariprasad KV (2002) Flowering events in sorghum in relation to expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica 127:411–419

    Article  CAS  Google Scholar 

  • Sharma HC, Taneja SL, Leuschner K, Nwanze KF (1992) Techniques to screen sorghum for resistance to insects. Information bulletin no. 32. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India, p 48

    Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopath 88:144–147

    Article  CAS  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics. CRC Press, Boca Raton

    Google Scholar 

  • Singh BU, Sharma HC, Rao KV (2011) Mechanisms and genetic diversity for host plant resistance to spotted stem borer, Chilo partellus in sorghum Sorghum bicolor. J Appl Entomol doi. doi:10.1111/j.1439-0418.2011.01647

    Google Scholar 

  • Singh VK, Singh A, Singh SP et al (2012) Incorporation of blast resistance into ‘PRR78’, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res 128:8–16

    Article  Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology and production. John Wiley & Sons, Inc, USA ISBN ISBN 0-471-24237-3

    Google Scholar 

  • Snowden JD (1936) The cultivated races of sorghum. Adlard, London, pp 1–274

    Google Scholar 

  • Snowden JD (1955) The wild fodder sorghums of the section Eu-sorghum. J Linn Soc Lond 55:191

    Article  Google Scholar 

  • Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK (2010) Genomic resources in horticultural crops: status, utility and challenges. Biotech Adv 29:199–209

    Article  Google Scholar 

  • Stafford HA (1969) Changes in phenolic compounds and related enzymes in young plants of sorghum. Phytochem 8:743–752

    Article  CAS  Google Scholar 

  • Stalker HT, Harlan JR, de Wet JMJ (1977) Observations on introgression of Tripsacum into maize. Amer J Bot 64:1162–1169

    Article  Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersocon chilense into tomato. Theor Appl Genet 101:527–537

    Article  CAS  Google Scholar 

  • Stebbins GL Jr (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  CAS  PubMed  Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1975) Evolutionary history of cultivated sorghums (Sorghum bicolor [Linn.] Moench) of Ethiopia. Bull Torrey Bot Club 102:325–333

    Article  Google Scholar 

  • Stemler ABL, Harlan JR, de Wet JMJ (1977) The sorghums of Ethiopia. Econ Bot 31:446–450

    Article  Google Scholar 

  • Stephens JC, Holland PF (1954) Cytoplasmic male sterility for hybrid sorghum seed production. J Agron 46:20–23

    Article  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor (L.) Moench) consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Sun Y, Suksayretrup K, Kirkham MB, Liang GH (1991) Pollen tube growth in reciprocal interspecific pollinations of Sorghum bicolor and S. versicolor. Plant Breed 107:197–202

    Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plant from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Article  Google Scholar 

  • Tang H, Liang GH (1988) The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and johnsongrass [S. halepense (L.) Pers.]: a re-evaluation. Theor Appl Genet 76:277–284

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Manners JM, Ludlow MM, Henzell RG (1993) DNA polymorphism in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 86:679–688

    Article  CAS  PubMed  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J et al (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor App Genet 107:116–122

    CAS  Google Scholar 

  • Tenkouano A (1995) Current trends in regional integration of sorghum research in Western and Central Africa. In: SICNA and ICSIRAT (eds) Int. Sorghum Millets Newsl 36:41–44

    Google Scholar 

  • Tesso T, Kapran I, Grenier C et al (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431

    Article  Google Scholar 

  • Thomas B, Prue VD (1997) Photoperiodism in plants, 2nd edn. Academic, London

    Google Scholar 

  • Thomas R, Venkatraman TS (1930) Sugarcane-Sorghum hybrids. Agric J India 25:114–118

    Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D (2001) Dwarf polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Thurber CS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Bio 14:68–80

    Article  CAS  Google Scholar 

  • Tovar MJ, Romero MP, Girona J, Motilva MJ (2002) L-Phenylalanine ammonialyase and concentration of phenolics in developing olive (Olea europaea L. cv. Arbequina) fruit grown under different irrigation regimes. J Sci Food Agric 82:892–898

    Article  CAS  Google Scholar 

  • Trouche G, Da S, Pale G, Sohoro A, Oue′Draogo O, Gosso G (2001) Evaluation participative de nouvelles variétés de sorgho. In: Hocde′ H, Lanc¸on J, Trouche G (eds) Sélection participative. CIRAD, Montpellier, pp 36–55

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Peter G (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • USDA ARS (2007) National Genetic Resources Program. Germplasm Resources Information Network (GRIN) [Online Database]

    Google Scholar 

  • Vaksman M, Traoé S, Niangado O (1996) Le photopériodisme des sorghos africains. Agriculture et Dévélopment 9:13–18

    Google Scholar 

  • Van Orsouw NJ, Hogers RCJ, Janssen A et al (2007) Complexity reduction of polymorphic sequences (CRoPSTM): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2, e1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van K, Rastogi K, Kim KH, Lee SH (2013) Next-generation sequencing technology for crop improvement. SABRAO J Breed Genet 45(1):84–99

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trend Biotechnol 27:522–530

    Article  CAS  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Translated by D. Love Cambridge University Press, Cambridge, 498 pp

    Google Scholar 

  • Vida G, Gal M, Uhrin A et al (2009) Molecular markers for the identification ofresistance genes and marker-assisted selection in breedingwheat for leaf rust resistance. Euphytica 170:67–76

    Article  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y et al (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishnu-Mittre A (1974) The beginning of agriculture, paleobotanical evidence in India. In: Hutchinson JB (ed) Evolutionary studies in world crops: diversity and change in the Indian subcontinent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • von Klercker J (1892) Eine Methode zur isolier lebender protoplasten. Ofvers Ventensk Akad For handle 49:463–474

    Google Scholar 

  • Waara S, Glimelius K (1995) The potential of somatic hybridization in crop breeding. Euphytica 85:217–233

    Article  Google Scholar 

  • Waniska RD, Venkatesha RT, Chandrashekar A et al (2001) Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. J Agric Food Chem 49:4732–4742

    Article  CAS  PubMed  Google Scholar 

  • Washburn RS, Martin JH (1933) An economic study of broomcorn production. U.S. Department of Agriculture, Technical bulletin No. 347

    Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA, Harlan JR, Królik H (1992) Saharan exploitation of plants 8,000 years B.P. Nature 359:721–724

    Article  Google Scholar 

  • Weston LA, Nimbal CI, Jeandet P (1999) Allelopathic potential of grain sorghum [Sorghum bicolor (L.) Moench] and related species. In: Inderjit KMMD, Foy CL (eds) Principles and practices in plant ecology. Allelochemical interactions. CRC Press, Boca Raton, pp 467–477

    Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    Article  CAS  Google Scholar 

  • Wooten DR (2001) The use of Sorghum propinquum to enhance agronomic traits in sorghum. M.S. Thesis. Texas A&M University, College Station, Texas

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TP (1990) Sorghum macrospermum and its relationship to the cultivated species S. bicolor. Cytologia (Tokyo) 55:141–151

    Article  Google Scholar 

  • Xia X (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge

    Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu GW, Magill CW, Schertz KF, Hart GE (1994) A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89:139–145

    CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  CAS  Google Scholar 

  • Yabe S, Ohsawa R, Iwata H (2013) Potential of genomic selection for mass selection breeding in annual allogamous crops. Crop Sci 53(1):95–105

    Article  Google Scholar 

  • Yemets AI, Blume YB (2003) Microprotoplasts as an efficient technique for chromosome transfer of single chromosomes between incompatible plant species. Cyto Genet 37:38–48

    Google Scholar 

  • Yim KO, Bayer DE (1997) Rhizome expression in a selected cross in the Sorghum genus. Euphytica 94:253–256

    Article  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman U, Scheurich P (1981) High frequency fusion of plant protoplasts by electric fields. Planta 151:26–32

    Article  Google Scholar 

  • Zizumbo-Villarreal D, Colunga-Garcia Marin P, Payro de la Cruz E, Delgado-Valerio P, Gepts P (2005) Population structure and evolutionary dynamics of wild–weedy–domesticated complexes of common bean in a Mesoamerican region. Crop Sci 45:1073–1083

    Article  CAS  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Zhang HB et al (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 87:1757–1764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kumari, P., Pahuja, S.K., Arya, S., Patil, J.V. (2016). Sorghum. In: Singh, M., Kumar, S. (eds) Broadening the Genetic Base of Grain Cereals. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9_7

Download citation

Publish with us

Policies and ethics