Skip to main content
Log in

Polymorphic microsatellite marker set for Carica papaya L. and its use in molecular-assisted selection

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Conventional methods for the selection of papaya pure lines are time-consuming. Procedures involving the use of molecular markers and the indirect selection of homozygous plants can reduce this time considerably. The objective of this study was to evaluate the informativeness of a microsatellite marker set when used in marker-assisted selection (MAS) for the development of new papaya lines. Eighty-three lines originating from two segregating F3 populations and from papaya germplasm were used for the molecular analysis of 27 microsatellite primers. Twenty polymorphic microsatellite primers were identified, allowing the identification of 86 alleles, with an average of 3.18 alleles per primer. The observed heterozygosity values were low for both the markers (0.00–0.29) and the individual lines (0.00–0.35). The inbreeding coefficient (f) ranged from 0.634 to 1.00. Eleven lines with f = 1.00 and 18 lines with f varying from 0.953 to 0.961 were identified. In addition, papaya lines showed high genetic diversity, which will certainly contribute to the development of new varieties. Our results show that the use of microsatellites in MAS is a quick and effective procedure for the development of papaya lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    Article  CAS  Google Scholar 

  • Chan YK (1992) Progress in breeding of F1 papaya hybrids in Malaysia. Acta Hortic 292:41–50

    Google Scholar 

  • Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian W, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics 177:2481–2491

    Article  CAS  PubMed  Google Scholar 

  • Cornelius PL, Dudley JW (1974) Effects of inbreeding by selfing and full-sib mating in a maize population. Crop Sci 14:815–819

    Article  Google Scholar 

  • Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306

    Article  CAS  Google Scholar 

  • Damgaard C, Loeschcke V (1994) Inbreeding depression and dominance-suppression competition after inbreeding in rapeseed (Brassica napus). Theor Appl Genet 88:321–323

    Article  Google Scholar 

  • Dinesh MR, Iyer CPA, Subramanyam MD (1992) Genetical study in papaya (Carica papaya L.). Acta Hortic 321:152–163

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eustice M, Yu Q, Lai CW, Hou S, Thimmapuram J, Liu L, Alam M, Moore PH, Presting GG, Ming R (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genomes 4:333–341

    Article  Google Scholar 

  • FAOSTAT (2007) Food and Agriculture Organization of the United Nations statistical database. Available at: http://faostat.fao.org/site/567/default.aspx#ancor. Accessed 04 June 2009

  • Huang H, Harding J, Byrne T, Famula T (1995) Effects of inbreeding on cut-flower yield in gerbera. Euphytica 81:157–161

    Article  Google Scholar 

  • Kwon YS, Eun MY, Sohn JK (2001) Marker-assisted selection for identification of plant regeneration ability of seed-derived calli in rice (Oryza sativa L.). Mol Cells 1:103–106

    Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Manshardt RM, Drew RA (1998) Biotechnology of papaya. Acta Hortic 461:65–73

    Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America (ASA–CSSA), Madison, pp 99–118

    Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR amplified microsatellites in plant genetics. Plant J 3:175–182

    Article  CAS  PubMed  Google Scholar 

  • Ocampo Pérez J, d’Eeckenbrugge GC, Risterucci AM, Dambier D, Ollitrault P (2007) Papaya genetic diversity assessed with microsatellite markers in germplasm from the Caribbean Region. Acta Hortic 740:93–101

    Google Scholar 

  • Ocampo J, d’Eeckenbruggeb GC, Bruyère S, de Lapeyre de Bellaire L, Ollitrault P (2006) Organization of morphological and genetic diversity of Caribbean and Venezuelan papaya germplasm. Fruits 61:25–37

    Article  Google Scholar 

  • Oliveira EJ, Padua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    CAS  Google Scholar 

  • Oliveira EJ, Dantas JLL, Castellen MS, Machado MD (2008) Identificação de microssatélites para o mamoeiro por meio da exploração do banco de dados de DNA. Rev Bras Frutic 30:841–845

    Google Scholar 

  • Oliveira EJ, Amorim VBO, Costa JL, Matos ELS, Castellen MS, Dantas JLL, Pádua JG (2010) Polymorphism of microsatellite markers in papaya (Carica papaya L.). Plant Mol Biol Report. doi: 10.1007/s11105-010-0180-6

  • Parasnis AS, Krishna WR, Chowdari KY, Gupta VS, Ranjekar PK (1999) Microsatellite (GATA)4 reveals sex-specific differences in papaya. Theor Appl Genet 99:1047–1052

    Article  CAS  Google Scholar 

  • Rallo P, Dorado G, Martín A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    Article  CAS  Google Scholar 

  • Santos SC, Ruggiero C, Silva CLSP, Lemos EGM (2003) A microsatellite library for Carica papaya L. cv. Sunrise Solo. Rev Bras Frutic 25:263–267

    Article  Google Scholar 

  • Sharon D, Hillel A, Vainstein A (1992) Applications of DNA fingerprints for identification and genetic analysis of Carica papaya and other Carica species. Euphytica 62:119–125

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Walsh B, Lynch M (2005) Selection and development of pure lines. In: Walsh B, Lynch M (eds) Evolution and selection of quantitative traits. Available at: http://nitro.biosci.arizona.edu/zbook/volume_2/vol2.html. Accessed 15 April 2009

Download references

Acknowledgments

This work was supported by Empresa Brasileira de Pesquisa Agropecuária, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eder Jorge de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, E.J., dos Santos Silva, A., de Carvalho, F.M. et al. Polymorphic microsatellite marker set for Carica papaya L. and its use in molecular-assisted selection. Euphytica 173, 279–287 (2010). https://doi.org/10.1007/s10681-010-0150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0150-y

Keywords

Navigation