Skip to main content
Log in

QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Nodal root angle in sorghum influences vertical and horizontal root distribution in the soil profile and is thus relevant to drought adaptation. In this study, we report for the first time on the mapping of four QTL for nodal root angle (qRA) in sorghum, in addition to three QTL for root dry weight, two for shoot dry weight, and three for plant leaf area. Phenotyping was done at the six leaf stage for a mapping population (n = 141) developed by crossing two inbred sorghum lines with contrasting root angle. Nodal root angle QTL explained 58.2% of the phenotypic variance and were validated across a range of diverse inbred lines. Three of the four nodal root angle QTL showed homology to previously identified root angle QTL in rice and maize, whereas all four QTL co-located with previously identified QTL for stay-green in sorghum. A putative association between nodal root angle QTL and grain yield was identified through single marker analysis on field testing data from a subset of the mapping population grown in hybrid combination with three different tester lines. Furthermore, a putative association between nodal root angle QTL and stay-green was identified using data sets from selected sorghum nested association mapping populations segregating for root angle. The identification of nodal root angle QTL presents new opportunities for improving drought adaptation mechanisms via molecular breeding to manipulate a trait for which selection has previously been very difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bengough AG, Gordon DC, Al-Menaie H, Ellis RP, Allan D, Keith R, Thomas WB, Forster BP (2004) Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262:63–70

    Article  CAS  Google Scholar 

  • Borrell AK, Hammer GL, Henzell RG (2000) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40:1037–1048

    Article  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2007) Analysis of mixed models for s language environments. ASReml-R reference manual, Technical report, Queensland Department of Primary Industries

  • Crasta OR, Xu WW, Nguyen HT, Rosenow DT, Mullet J (1999) Mapping of post flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Gilmour A, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–273

    Article  Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Slavi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    Article  PubMed  CAS  Google Scholar 

  • Guingo E, Hébert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  • Hammer G (2006) Pathways to prosperity: breaking the yield barrier in sorghum. Agric Sci 19:16–22

    Google Scholar 

  • Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Hochholdinger F, Katrin W, Sauer M, Dembonsky D (2004) Genetic dissection of root formation in maize reveals root-type specific development programmes. Ann Bot 93:359–368

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    Article  CAS  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucl Acids Res 36:W5–W9. doi:101093/nar/gkn201

    Article  PubMed  CAS  Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457

    Article  Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    PubMed  CAS  Google Scholar 

  • Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129

    Article  CAS  Google Scholar 

  • Kebede H, Subadhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kim J-S, Klein P, Klein R, Price H, Mullet J, Stelly D (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Lafarge TA, Hammer GL (2002) Tillering in grain sorghum over a wide range of population densities: modelling dynamics of tiller fertility. Ann Bot 90:99–110

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 136:1447–1455

    Google Scholar 

  • Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Belloti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

    Article  PubMed  CAS  Google Scholar 

  • López-Castañeda C, Richards RA, Farquhar GD, Williamson RE (1996) Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Sci 36:1257–1266

    Article  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals non-random distribution of QTL and of gene rich regions with significant implications for crop improvement. Theor Appl Genet. doi:10.1007/s00122-011-1575-y

  • Mace ES, Rami JF, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) marker. BMC Plant Biol 9:13

    Article  PubMed  Google Scholar 

  • Mace ES, Xia L, Jordan DL, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analysis and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Manga VK, Yadav OP (1995) Effect of seed size on development traits and ability to tolerate drought in pearl millet. J Arid Env 29:169–172

    Article  Google Scholar 

  • Manschadi AM, Christopher JT, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    Article  CAS  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, deVoil P (2008) Genotypic differences in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Norton GJ, Price AH (2009) Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica 166:229–237

    Article  Google Scholar 

  • Omori F, Mano Y (2007) QTL mapping of root angle in F2 populations from maize ‘B73’ × teosinte ‘Zea luxurians’. Plant Root 1:57–65

    Article  CAS  Google Scholar 

  • Oyanagi A (1994) Gravitropic response growth angle and vertical distribution of roots of wheat (Triticum aestivum L.). Plant Soil 165:323–332

    Article  CAS  Google Scholar 

  • Richards RA, Passioura JB (1981) Seminal root morphology and water-use of wheat. 1. Environmental effects. Crop Sci 21:249–252

    Article  Google Scholar 

  • Richards RA (1991) Crop improvement for Australia: future opportunities. Field Crops Res 26:141–169

    Article  Google Scholar 

  • Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151:291–305

    Article  Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL (2011) Genetic variability and control of nodal root angle in sorghum. Crop Sci (in press)

  • Singh V, van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299

    Article  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • VSN International (2010) GenStat 13th Edition, VSN International Ltd, UK. http://www.vsni.co.uk

  • Wang S, Basten C, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgenncsuedu/qtlcart/WQTLCarthtm

  • Watt M, Magee LJ, McCully ME (2007) Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. New Phytol 178:135–146

    Article  Google Scholar 

  • Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kirsten Sakreswki for her expert technical assistance. We thank the Australian Grains Research and Development Corporation (GRDC; http://www.grdc.com.au) and the Australian Research Council (ARC) through ARC-linkage project LP0560484 for part of the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mace.

Additional information

Communicated by E. Guiderdoni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mace, E.S., Singh, V., Van Oosterom, E.J. et al. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124, 97–109 (2012). https://doi.org/10.1007/s00122-011-1690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1690-9

Keywords

Navigation