Skip to main content

Seed Bio-priming for Biotic and Abiotic Stress Management

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

In modern agriculture, advance technologies are being deployed for breaking yield barriers and enhancing crop productivity. Devising varied seed enhancement technologies is an important domain assuring uniform field emergence, better crop stand and realisation of higher yield in different crops. Integration of diverse plant extracts, microbial products and biotic agents through bio-priming for managing seed crop targeting against biotic and abiotic stresses has been considered as a unique approach, as it requires lesser amounts of chemicals, enhances efficacy of the seeds, reduces the cost of management and eliminates pollution hazards while causing minimum interference with biological equilibrium. Seed bio-priming is one of the vital seed enhancement tool in management of biotic as well as abiotic stresses and guarantees uniform stand establishment under stress conditions. Therefore, research programmes encompassing identification and genetic manipulations of novel biocontrol agents (fungal and bacterial strains) along with its commercial application needs to be devised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SZ, Sandhya V, Grover M, Rao LV, Kishore VN, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grape vine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Belal EB, Hassan MM, El-Ramady HR (2013) Phylogenetic and characterization of salt-tolerant rhizobial strain nodulating faba bean plants. Afr J Biotechnol 12(27):4324–4337

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Luciane MPP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial Biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8(17):1749–1762

    Article  Google Scholar 

  • Broklehurst PA, Dearman J (1983) Interaction between seed priming treatments and nine seed lots of carrot, celery and onion. I. Laboratory germination. Ann Appl Biol 102(3):577–584

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Callan NW, Mathre DW, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping off in sh-2 sweet corn. Plant Dis (74):368–372

    Google Scholar 

  • Chandra Nayaka S, Niranjana SR, Uday Shankar AC, Niranjan Raj S, Reddy MS, Rakash HS, Mortensen CN (2008) Seed bio-priming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Prot 1–19

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th international crop science congress

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:563–571

    Article  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadeh M, Farhangfar M (2013) Seed bio-priming with trichoderma species and pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int J Agron Plant Prod 4(4):610–619

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation of Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Figueiredo MVB, Seldin L, de Araujo FF, Mariano RDLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Plant growth and health promoting bacteria, pp 21–43

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goteti PK, Emmanuel LDA, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol 2013:1–7, Article ID 869697

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko EJ, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hamman B, Egli DB, Koning G (2002) Seed vigor, soil borne pathogens, pre-emergent growth and soybean seedling emergence. Am Soc Agron 42(2):451–457

    Google Scholar 

  • Hanci F, Cebeci E, Polat Z (2014) The effects of Trichoderma harzianum on germination of onion (Allium cepa L.) seeds under salt stress conditions. Tarım Bilimleri AraÅŸtırma Dergisi 7(1):45–48

    Google Scholar 

  • Harish S, Biradarpatil NK, Patil MD, Vinodkumar SB (2014) Influence of growing condition and seed treatments on storability of tomato (Solanum lycopersicum L.) seeds. Environ Ecol 32(4):1223–1229

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Heino P, Palva ET (2003) Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Topics in current genetics, vol 8., pp 151–186

    Chapter  Google Scholar 

  • Jackson MB (1997) Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishore Kumar A, Gopi R, Somasundaram R, Paneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B 60:7–11

    Article  CAS  Google Scholar 

  • Jensen B, Knudsen Inge MB, Madsen M, Jensen Dan F (2004) Bio-priming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Am Phyto Pathol Soc 94(6):551–560

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Res J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Cur Microbiol 4(5):317–320

    Article  CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldan A (2008) Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Konnova SA, Brykova OS, Sachkova OA, Egorenkova IV, Ignatov VV (2001) Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiology 70:436–440

    Article  CAS  Google Scholar 

  • Lee SW, Ahn PI, Slm SY, Lee SY, Seo MW, Kim S, Park SY, Lee YH, Kang S (2010) Pseudomonas sp. LSW25R antagonistic to plant pathogens promoted plant growth and reduced blossom end rot of tomato roots in a hydroponic system. Eur J Plant Pathol 126:1–11

    Article  Google Scholar 

  • Lewis JA, Papavizas GC, Lumsden RD (1991) A new formulation system for the application of biocontrol fungi applied to soil. Biocontrol Sci Technol 1:59–69

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nsberger J (1997) Growth and water status in meadow fescue (Festuca pratensis) is differently affected by its two natural endophytes. Agron J 89:673–678

    Article  Google Scholar 

  • Mansouri F, Bjorkman T, Harman GE (2010) Seed Treatment with Trichoderma harzianum alleviates biotic, abiotic and physiological stress in germinating seed and seedling. Phytopathology 100:1213–1221

    Article  Google Scholar 

  • Marulanada A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83(11):972–983

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McDonald MB, Copeland L (1997) Seed production: principles and practices. Chapman & Hall, New York

    Book  Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Article  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750

    Article  CAS  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Chauhan PS, DasGupta SM, Seem K, Varma A, Staddon WJ (2010) Tripartite interactions among Paenibacillus lentimorbus NRRLB-30488, Piriformospora indica DSM 11827 and Cicer arietinum L. World J Microbiol Biotechnol 58:562–575

    Google Scholar 

  • Neelam T, Meenu S (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  Google Scholar 

  • Niranjan Raj S, Shetty NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manage 50(1):41–48

    Article  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Oliveira LA, Porto AL, Tambourgi EB (2006) Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresource Technol 97(6):862–867

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Phat CT, Duong NT, Du LT (2005) Influence of grain discoloration to seed quality Omnn rice. 13:139–144

    Google Scholar 

  • Pill WG, Collins CM, Goldberger B, Gregory N (2009) Responses of non-primed or primed seeds of ‘Marketmore 76’ cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum. Sci Hortic 121:54–62

    Article  Google Scholar 

  • Polle A, Schützendübel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Topics in current genetics, vol 4., pp 187–215

    Chapter  Google Scholar 

  • Ralph W (1978) Enhancing the success of seed thermotherapy: repair of thermal damage to cabbage seed using polyethylene glycol (PEG) treatment. Plant Dis Rep 62:406–407

    Google Scholar 

  • Redman RS, Ranson J, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a non-pathogenic endophytic mutualist by gene disruption. Mol Plant-Microbe Interact 12:969–975

    Article  CAS  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Richardson MD, Chapman GW Jr, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32:1060–1072

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Cobaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodrìguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21(2):24–30

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sauve EM, Shiel RS (1980) Coating seeds with polyvinyl resins. J Hortic Sci 55(4):371–373

    CAS  Google Scholar 

  • Schardl SL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 10:1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant-Microbe Interact 21:799–807

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopath 48:21–43

    Article  CAS  Google Scholar 

  • Singh US, Zaidi NW, Joshi D, Jones D, Khan T, Bajpai A (2004) Trichoderma a microbe with multifaceted activity. Annu Rev Plant Pathol 3:33–75

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava S, Yadav A, Seema K, Mishra S, Choudhary V, Nautiyal CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 91:728–734

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  • Wada H, Panichsakpatana S, Kimura M, Takai Y (1978) Nitrogen fixation in paddy soils: I. Factors affecting N2 fixation. Soil Sci Plant Nutr 24(3):357–365

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop associated biological control pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 8:1508–1512

    Article  Google Scholar 

  • White RH, Engelke MC, Morton SJ, Johnson-Cicalese JM, Ruemmele BA (1992) Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci 32:1392–1396

    Article  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33(12):1733–1743

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim M-S, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rajendra Prasad, S., Kamble, U.R., Sripathy, K.V., Udaya Bhaskar, K., Singh, D.P. (2016). Seed Bio-priming for Biotic and Abiotic Stress Management. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_12

Download citation

Publish with us

Policies and ethics