Skip to main content

Electroporation Transformation of Barley

  • Chapter
Genetic Transformation of Plants

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 23))

Abstract

Barley (Hordeum vulgare L.) is a member of the tribe Triticeae of the family Poaceae (von Bothmer et al. 1991), which was widely adapted to temperate regions of the world. Barley has both two- and six-rowed types according to spike morphology; intermediate types also exist. Due to its good adaptation to unfavorable climates, barley is produced in a significant quantity and consumed as livestock feed, food for man and malt brewery materials. In 2001, barley was harvested from 53,827,895 ha (FAO, http://apps.fao.org/page/collections) and yielded 25,723 hg/ha of grain in the world. Today, barley is not only the fourth most important cereal crop (after maize, wheat and rice) in the world, but also an excellent model plant for biochemists, physiologists, geneticists and molecular biologists (Shewry 1992) because of its inbred diploid nature, low chromosome number 2n = 2x = 14 (von Bothmer 1992) and relatively small genome size. The barley genome contains nearly 5.5 pg of DNA per haploid nucleus, equivalent to approximately 5.3 x 109bp (Bennet and Smith 1976). Ease of growth under laboratory conditions facilitates the development of molecular markers for construction of genetic maps (Becker and Heun 1995; Hayes et al. 1996; Manninen 2000; Ramsay et al. 2000; Williams et al. 2001), genome analysis (Michalek et al. 2002) and functional genomics studies (Öztürk et al. 2002; Sreenivasulu et al. 2002). Special attention has also been given to the establishment of tissue culture and development of gene transfer systems in order to obtain desirable genotypes (Lemaux et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahloowalia BS (1987) Plant regeneration from embryo-callus culture in barley. Euphytica 36: 659–665

    Article  Google Scholar 

  2. Ahokas H (1989) Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor Appl Genet 77: 469–472

    Article  CAS  Google Scholar 

  3. Barro F, Cannell ME, Lazzeri PA, Barcelo P (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor Appl Genet 97: 684–695

    Article  CAS  Google Scholar 

  4. Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 27 (4): 835–845

    Article  PubMed  CAS  Google Scholar 

  5. Bennet MD, Smith LB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274: 227–274

    Article  Google Scholar 

  6. Bolik M, Koop HU (1991) Identification of embryogenic microspores of barley (Hordeum vulgare L.) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162: 61–68

    Article  Google Scholar 

  7. Breiman A (1985) Plant regeneration from Hordeum spontaneum and Hordeum bulbosum immature embryo-derived calli. Plant Cell Rep 4: 70–73

    Article  Google Scholar 

  8. Cheng TY, Smith HH (1975) Organogenesis from callus culture of Hordeum vulgare. Planta 123: 307–310

    Article  Google Scholar 

  9. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971980

    Google Scholar 

  10. Chibbar RN, Kartha KK, Datla RSS, Leung N, Caswell K, Mallard CS, Steinhauer L (1993) The effect of different promoter-sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells. Plant Cell Rep 12: 506–509

    Article  CAS  Google Scholar 

  11. Dekeyser RA, Claes B, DeRycke RMU, Habets ME, Van Montagu MC, Caplan AB (1990) Transient gene expression in intact and organized rice tissues. Plant Cell 2: 591–602

    PubMed  CAS  Google Scholar 

  12. D’Halluin K, Bonne E, Bossut M, DeBeuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505

    PubMed  Google Scholar 

  13. Dunwell JM (1986) Barley. In: Evans DA, Sharp R, Ammirato PV (eds) Handbook of plant cell culture, vol 4. MacMillan, London, pp 339–369

    Google Scholar 

  14. Dwivedi UN, Capbell WH, Yu J, Datla RSS, Bugos RC, Chiang VL, Dodila GK (1994) Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense 0-methyltransferase gene from Populus. Plant Mol Biol 26: 61–71

    Article  PubMed  CAS  Google Scholar 

  15. Eigel L, Koop HU (1989) Nurse culture of individual cells: regeneration of colonies from single protoplasts of Nicotiana tabacum, Brassica napus and Hordeum vulgare L. J Plant Physiol 134: 577–581

    Article  Google Scholar 

  16. Funatsuki H, Lörz H, Lazzeri PA (1992) Use of feeder cells to improve barley protoplast culture and regeneration. Plant Sci 85: 179–187

    Article  Google Scholar 

  17. Funatsuki H, Kuroda M, Lazzeri PA, Müller E, Lörz H, Kishinami I (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor Appl Genet 91: 707–712

    Article  CAS  Google Scholar 

  18. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82: 5824–5828

    Article  PubMed  CAS  Google Scholar 

  19. Goldstein CS, Kronstrad WE (1986) Tissue culture and plant regeneration from immature embryos of barley Hordeum vulgare. Theor Appl Genet 71: 631–636

    Article  Google Scholar 

  20. Gözükirmizi N, Ari S, Oraler G, Okatan Y, Ünsal N (1990) Callus induction, plant regeneration and chromosomal variations in barley. Acta Bot Neerl 39: 379–387

    Google Scholar 

  21. Gustafson VD, Baenziger PS, Mitra A, Kaeppler HF, Papa CM, Kaeppler SM (1995) Electropora-

    Google Scholar 

  22. tion of wheat anther culture-derived embryoids. Cereal Res Comm 23:207–213

    Google Scholar 

  23. Gürel F, Gözükirmizi N (2000) Optimization of gene transfer into barley (Hordeum vulgare L.)

    Google Scholar 

  24. mature embryos by tissue electroporation. Plant Cell Rep 19:787–791

    Google Scholar 

  25. Hagio T, Hirabayashi T, Machii H, Tomotsune H (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Rep 14: 329–334

    Article  CAS  Google Scholar 

  26. Hansch R, Koprek T, Heydemann H, Mendel RR, Schulze J (1996) Electroporation-mediated

    Google Scholar 

  27. transient gene expression in isolated scutella of Hordeum vulgare. Physiol Plant 98:20–27 Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci

    Google Scholar 

  28. -231

    Google Scholar 

  29. Harwood WA, Bean SJ, Chen DF, Mullineaux PM, Snape JW (1995) Transformation studies in Hordeum vulgare using a highly regenerable microspore system. Euphytica 85: 113–118

    Article  Google Scholar 

  30. Hayes PM, Chen PQ, Kleinhofs A, Kilian A, Mather DE (1996) Barley genome mapping and its applications in methods of genome analysis in plants. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 229–249

    Google Scholar 

  31. He GY, Lazzeri PA, Cannell ME (2001) Fertile transgenic plants obtained from tritordeum inflorescences by tissue electroporation. Plant Cell Rep 20: 67–72

    Article  CAS  Google Scholar 

  32. Hoekstra S, Zijderveld MH, Louwerse JD, Heidekamp F, Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86: 89–96

    Google Scholar 

  33. Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6: 531543

    Google Scholar 

  34. Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 9: 21–32

    Article  PubMed  CAS  Google Scholar 

  35. Huang B, Sunderland N (1982) Temperature-stress pretreatment in barley anther culture. Ann Bot 49: 77–88

    Google Scholar 

  36. Jahne A, Lazzeri PA, Lörz H (1991a) Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.) Plant Cell Rep 10: 1–6

    Google Scholar 

  37. Jahne A, Lazzeri PA, Jager-Gussen M, Lörz H (1991b) Plant regeneration from embryogenic cell suspensions derived from anther cultures of barley (Hordeum vulgare L.). Theor Appl Genet 82: 74–80

    Article  Google Scholar 

  38. Jahne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore derived, fertile barley. Theor Appl Genet 89: 525–533

    Article  Google Scholar 

  39. Jefferson RA (1987) Assaying chimeric genes in plants: GUS gene fusion system. Plant Mol Cell Biol 4: 347–357

    Google Scholar 

  40. Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK (1996) Transgenic barley expressing a protein-engineered, thermostable (1,3–1,4)-13-glucanase during germination. Proc Natl Acad Sci USA 93: 3487–3491

    Article  PubMed  CAS  Google Scholar 

  41. Joersbo M, Jorgensen RB, Olesen P (1990) Transient electropermeabilization of barley (Hordeum vulgare L.) microspores to propidium iodide. Plant Cell Tissue Organ Cult 23: 125–129

    Article  CAS  Google Scholar 

  42. Jorgensen RB, Jensen CJ, Andersen B, Bothmer R (1986) High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.). Plant Cell Tissue Organ Cult 6: 199–207

    Article  Google Scholar 

  43. Jorgensen RB, Andersen B, Andersen JM (1992) Effects and characterization of the conditioning medium that increase colony formation from barley (Hordeum vulgare L.) protoplasts. J Plant Physiol 140: 328–333

    Article  Google Scholar 

  44. Junker B, Zimmy J, Lührs R, Lörz H (1987) Transient expression of chimeric genes in dividing and nondividing cereal protoplasts after PEG induced DNA uptake. Plant Cell Rep 6: 329–332

    Article  CAS  Google Scholar 

  45. Kao KN, Horn DC (1982) A method for induction of pollen plants in barley In: Fujiwara A (ed) Plant tissue culture. Maruzen, Tokyo, pp 529–530

    Google Scholar 

  46. Kao KN, Saleem M, Abrams S, Petras S, Horn D, Mallard C (1991) Culture conditions for induction of green plants from barley microspores by anther culture methods. Plant Cell Rep 9: 595–601

    Article  Google Scholar 

  47. Karp A, Steele SH, Breiman A, Shewry PR, Parmar S, Jones MGK (1987) Minimal variation in barley plants regenerated from cultured immature embryos. Genome 29: 405–412

    Article  Google Scholar 

  48. Karp A, Lazzeri PA (1992) Regeneration, stability and transformation of barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. Alden Press/CAB International, Oxford, pp 549–571

    Google Scholar 

  49. Kartha KK, Chibbar RN, Georges F, Leung N, Caswell K, Kendall E, Qureshi J (1989) Transient expression of chloramphenicol acetyltransferase ( CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. Plant Cell Rep 8: 429–432

    Google Scholar 

  50. Katoh Y, Hasegawa T, Suzuki T, Fuji T (1986) Plant regeneration from the callus derived from mature embryos of Hiproly barley, Hordeum distichum L., culture. Agric Biol Chem 50: 761–762

    Article  CAS  Google Scholar 

  51. Kihara M, Saeki K, Ito K (1998) Rapid production of fertile transgenic barley (Hordeum vulgare L.) by direct gene transfer to primary callus-derived protoplasts. Plant Cell Rep 17: 937–960

    Article  CAS  Google Scholar 

  52. Klöti A, Iglesias VA, Wünn J, Burkhardt PK, Datta SK, Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12: 671–675

    Article  Google Scholar 

  53. Knudsen S, Müller M (1991) Transformation of the developing barley endosperm by particle bombardment. Planta 185: 330–336

    Article  CAS  Google Scholar 

  54. Koblitz H (1976) Isolierung und Kultivierung von Protoplasten aus Calluskulturen der Gerste. Biochem Physiol Pflanz 170: 287–293

    Google Scholar 

  55. Köhler F, Wenzel G (1985) Regeneration of isolated barley microspores in conditioned media and trials to characterize the responsible factor. J Plant Physiol 121: 181–191

    Article  Google Scholar 

  56. Koprek T, Haensch R, Nerlich A, Mendel RR, Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 119: 79–91

    Article  CAS  Google Scholar 

  57. Kott LS, Kasha KJ (1984) Initiation and morphological development of somatic embryoids from barley cell cultures. Can J Bot 62: 1245–1249

    Article  Google Scholar 

  58. Laursen CM, Krzyzek RA, Flick CE, Anderson PC, Spencer TM (1994) Production of fertile trans-genic maize by electroporation of suspension culture cells. Plant Mol Biol 24: 51–61

    Article  PubMed  CAS  Google Scholar 

  59. Lazzeri PA, Lörz H (1990) Regenerable suspension and protoplast cultures of barley and stable transformation via DNA uptake into protoplasts. In: Lycett GW, Grierson D (eds) Genetic engineering of crop plants. Butterworths, London, pp 231–237

    Google Scholar 

  60. Lazzeri PA, Brettschneider R, Lührs R, Lörz H (1991) Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet 81: 437–444

    Article  Google Scholar 

  61. Lee BT, Murdock K, Topping J, Kreis M, Jones MGK (1989) Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat. Plant Mol Biol 13: 2129

    Article  Google Scholar 

  62. Lemaux PG, Cho MJ, Zhang S, Bregitzer P (1999) Transgenic cereals: Hordeum vulgare L: (barley) In: Vasil IK (ed) Molecular improvement of cereal crops. Kluwer Academic, London, pp 255316

    Google Scholar 

  63. Linn F, Heidmann I, Saedler H, Meyer P (1990) Epigenetic changes in the expression of the maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336

    Article  PubMed  CAS  Google Scholar 

  64. Lührs R, Lörz H (1987) Plant regeneration in vitro from embryogenic cultures of spring-and winter-type barley (Hordeum vulgare L.). Theor Appl Genet 75: 16–25

    Article  Google Scholar 

  65. Lührs R, Lörz H (1988) Initiation of morphogenic cell suspensions and protoplast cultures of barley (Hordeum vulgare L). Planta 175: 71–81

    Article  Google Scholar 

  66. Lührs R, Nielsen K (1992) Microspore cultures as donor tissue for the initiation of embryogenic cell suspensions in barley. Plant Cell Tissue Organ Cult 31: 169–178

    Article  Google Scholar 

  67. Lupotto E (1984) Callus induction and plant regeneration from barley mature embryos. Ann Bot 54: 523–529

    Google Scholar 

  68. Manninen OM (2000) Genetic mapping of important traits in barley breeding. Academic Dissertation, ISBN 951–45–9007–4. Division of Genetics, Department of Biosciences, University of Helsinki, February 2000

    Google Scholar 

  69. Mendel RR, Müller B, Schulze J, Kolesnikov V, Zelenin A (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor Appl Genet 78: 31–34

    Article  CAS  Google Scholar 

  70. Mendel RR, Clauss E, Hellmund R, Schulze J, Steinbiss HH, Tewes A (1990) Gene transfer to barley. In: Nijkamp HJJ, Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 73–78

    Chapter  Google Scholar 

  71. Mesencev AV, Butenko RG, Rodionova NA (1976) Obtention of isolated protoplasts from mesophyll of perennial crop plants and barley. Fiziol Rastenii 23: 508–512

    Google Scholar 

  72. Michalek W, Weschke W, Pleissner KP, Graner A (2002) EST analysis in barley defines a unigene set comprising 4000 genes. Theor Appl Genet 104: 97–103

    Article  PubMed  Google Scholar 

  73. Mordhorst AP, Lörz H (1992) Electrostimulated regeneration of plantlets from protoplasts derived from cell suspensions of barley (Hordeum vulgare). Physiol Plant 85: 289–294

    Article  CAS  Google Scholar 

  74. Müller B, Schulze J, Wegner U (1989) Establishment of barley cell suspension cultures of mesocotyl origin suitable for isolation of dividing protoplasts. Biochem Physiol Pfl 185: 123–130

    Google Scholar 

  75. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  76. Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92: 301–308

    Article  Google Scholar 

  77. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1: 841–845

    CAS  Google Scholar 

  78. Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. Alden Press/CAB International, Oxford, pp 19–43

    Google Scholar 

  79. Olsen FL (1991) Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L.). Hereditas 115: 255–266

    Article  PubMed  CAS  Google Scholar 

  80. Öztürk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gözükirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought and salt-stressed barley. Plant Mol Biol 48: 551–573

    Article  Google Scholar 

  81. Padua VL, Ferreira RP, Meneses L, Uchoa N, Margis-Pinherio M, Mansur E (2001) Transformation of Brazilian elite indica-type rice (Oryza sativa L.) by electroporation of shoot apex explants. Plant Mol Biol Rep 19: 55–64

    Article  Google Scholar 

  82. Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6: 113–123

    Article  CAS  Google Scholar 

  83. Piccirilli M, Arcioni S (1991) Haploid plants regenerated via anther culture in wild barley (Hordeum spontaneum C. Kock ). Plant Cell Rep 10: 273–276

    Google Scholar 

  84. Ramsay L, Macaulay M, Degli-Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Juvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeated-based linkage map of barley. Genetics 156: 1997–2005

    PubMed  CAS  Google Scholar 

  85. Rao KV(1995) Transient gene expression in electroporated immature embryos of rice (Oryza sativa L.). J Plant Physiol 147:71–74

    Google Scholar 

  86. Rech EL, Ochatt SJ, Chand PK, Power JB, Davey MR(1987) Electro-enhancement of division of plant protoplast-derived cells. Protoplasma 141: 169–176

    Google Scholar 

  87. Rengel Z (1987) Embryogenic callus induction and plant regeneration from cultured Hordeum vulgare mature embryos. Plant Physiol Biochem 25: 43–48

    CAS  Google Scholar 

  88. Ritala A, Aikasalo R, Aspegren K, Salmenkallio-Marttila M, Akerman S, Mannonen L, Kurten U, Puupponen-Pimia R, Teeri TH, Kauppinen V (1995) Transgenic barley by particle bombardment: inheritance of the transferred gene and characteristics of transgenic barley plants. Euphytica 85: 81–88

    Article  Google Scholar 

  89. Rogers SW, Rogers JC (1992) The importance of DNA methylation for stability of foreign DNA in barley. Plant Mol Biol 18: 945–961

    Article  PubMed  CAS  Google Scholar 

  90. Rotem-Abarbanell D, Breiman A (1989) Plant regeneration from immature and mature embryo derived calli of Hordeum marinum. Plant Cell Tissue Organ Cult 16: 207–216

    Google Scholar 

  91. Salmenkallio–Martilla M (1994) Regeneration of fertile barley plants from protoplasts and production of transgenic barley by electroporation. Academic Dissertation, ISBN 951–38–4640–7 (VTT Publications). Plant Physiology Division, Department of Botany, Faculty of Science, University of Helsinki, Nov 1994

    Google Scholar 

  92. Salmenkallio-Marttila M, Aspegren K, Akerman S, Kurten U, Mannonen L, Ritala A, Teeri TH, Kauppinen V (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts. Plant Cell Rep 15: 301–304

    Article  CAS  Google Scholar 

  93. Seguin-Swartz G, Kott L, Kasha KJ (1984) Development of haploid cell lines from immature barley, Hordeum vulgare embryos. Plant Cell Rep 3: 95–97

    Article  Google Scholar 

  94. Shewry PR (1992) Barley: genetics, biochemistry, molecular biology and biochemistry. Alden Press/CAB International, Oxford

    Google Scholar 

  95. Shillito RD, Saul MW, Paszkowski J, Müller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Biotechnology 3: 1099–1105

    Article  Google Scholar 

  96. Songstad DD, Halaka FG, DeBoer DL, Armstrong CL, Hinchee MAW, Ford-Santino CG, Brown SM, From ME, Horsch RB (1993) Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tissue Organ Cult 33: 195–201

    Article  CAS  Google Scholar 

  97. Sorokin AP, Ke XY, Chen DF, Elliott MC (2000) Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci 156: 227–233

    Article  PubMed  CAS  Google Scholar 

  98. Spiker S, Thompson WF (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol 110: 15–21

    PubMed  CAS  Google Scholar 

  99. Sreenivasulu N, Altschmied L, Panitz R, Hahnel U, Michalek W, Weschke W, Wobus U (2002) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol Genet Genomics 266: 758–767

    Article  PubMed  CAS  Google Scholar 

  100. Stiff CM, Kilian A, Zhou H, Kudrna DA, Kleinhofs A (1995) Stable transformation of barley callus using biolistic particle bombardment and the phosphinothricin acetyltransferase (bar) gene. Plant Cell Tissue Organ Cult 40: 243–248

    Article  CAS  Google Scholar 

  101. Tada Y, Sakamoto M, Fujimura T (1990) Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor Appl Genet 80: 475–480

    Article  CAS  Google Scholar 

  102. Teeri TH, Patel GH, Aspegren A, Kauppinen V (1989) Chloroplast targeting of neomycin phosphotransferase II with a pea transit peptide in electroporated barley mesophyll protoplasts. Plant Cell Rep 8: 187–190

    Article  CAS  Google Scholar 

  103. Thomas MR, Scott KJ (1985) Plant regeneration by somatic embryogenesis from callus initiated from immature embryos and immature inflorescences of Hordeum vulgare. J Plant Physiol 12: 159–169

    Article  Google Scholar 

  104. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11: 1369–1376

    Google Scholar 

  105. Töpfer R, Gronenborn B, Schell J, Steinbiss HH (1989) Uptake and transient expression of chimaeric genes in seed-derived embryos. Plant Cell 1: 133–139

    PubMed  Google Scholar 

  106. Ukai Y, Nishimura S (1987) Regeneration of plants from calli derived from seeds and mature embryos in barley. Jpn J Breed 37: 405–411

    Google Scholar 

  107. von Bothmer R (1992) The wild species of Hordeum: Relationships and potential use for improvement of cultivated barley. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. Alden Press/CAB International, Oxford, pp 3–18

    Google Scholar 

  108. von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1991) An ecogeographical study of the genus Hordeum. International Board for Plant Genetic Resources, Rome, pp 127

    Google Scholar 

  109. Walbot V (1988) Preparation of DNA from single rice seedlings. Rice Genet Newslett 5: 149151

    Google Scholar 

  110. Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104: 37–48

    PubMed  CAS  Google Scholar 

  111. Weigel RC, Hughes KW (1985) Long term regeneration by somatic embryogenesis in barley (Hordeum vulgare L.) tissue cultures derived from apical meristem explants. Plant Cell Tissue Organ Cult 5: 151–162

    Article  Google Scholar 

  112. Williams K, Bogacki P, Scott L, Karakousis A, Wallwork H (2001) Mapping a gene for leaf scald resistance in barley line “B87/14” and validation of microsatellite and RFLP markers for marker-assisted selection. Plant Breed 120: 301–304

    Article  CAS  Google Scholar 

  113. Wu H, McCormac AC, Elliot MC, Chen D (1998) Agrobacterium-mediated stable transformation of cell suspension cultures of barley (Hordeum vulgare L.). Plant Cell Tissue Organ Cult 54: 161–171

    Article  CAS  Google Scholar 

  114. Xu X, Li B (1994) Fertile transgenic indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep 13: 237–242

    Article  CAS  Google Scholar 

  115. Yan Q, Zhang X, Shi J, Li J (1990) Green plant regeneration from protoplasts of barley (Hordeum vulgare L.). Kexue Tongbao 35: 1581–1583

    Google Scholar 

  116. Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.). Genome 40: 570–581

    Article  PubMed  CAS  Google Scholar 

  117. Zaghmout OMF (1993) Direct electroporation of plasmid DNA into wheat intact cells of embryo-genic callus. Cereal Res Commun 21: 301–308

    Google Scholar 

  118. Zimmermann U,Vienken J, Pilwat G (1984) Electrodiffusion of cells. In: Chayen J, Bitensky L (eds) Investigative microtechniques in medicine and biology, vol 1. Dekker, New York, pp 89–167

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gürel, F., Gözükirmizi, N. (2003). Electroporation Transformation of Barley. In: Jackson, J.F., Linskens, H.F. (eds) Genetic Transformation of Plants. Molecular Methods of Plant Analysis, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07424-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07424-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05553-9

  • Online ISBN: 978-3-662-07424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics