Skip to main content
Log in

Gene transfer by electroporation into intact scutellum cells of wheat embryos

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Gene transfer into intact cells was achieved by electroporating zygotic wheat embryos without any special pretreatment. Electroporation was tissue specific in so far as scutellum cells were found to be much more susceptible to gene transfer than other cell types of the embryo. The orientation of the embryos in the electroporation chamber also influenced the number of transformed scutellum cells; during electroporation, as in electrophoresis, the negatively charged plasmid DNA molecules seemed to move towards the positive electrode. Therefore, the embryos were arranged so that the scutella faced the negative electrode. The use of plasmids carrying either two chimeric anthocyanin regulatory genes or a chimeric gusA gene allowed clear identification of transformed cells in the scutellum. On some of the embryos, more than 100 transformed scutellum cells were found after electroporation with single electric pulses of 275 V/cm discharged from a 960-μF capacitor and with 100 μg DNA/ml electroporation buffer. Using the anthocyanin marker system, visibly transformed cells grew to produce red sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

GUS:

β-glucuronidase

MES:

2-N-morpholinoethane sulfonic acid

References

  • Christou P, Ford TL, Kofron M (1991) Bio/Technology 9: 957–962.

    Google Scholar 

  • Christou P (1992) The Plant J. 2(3): 275–281.

    Google Scholar 

  • Cone KC, Burr FA, Burr B (1986) Proc. Natl. Acad. Sci. USA 83: 9631–9635.

    Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Bio/Technology 8: 736–740.

    Google Scholar 

  • Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Plant Mol. Biol. 20: 619–629.

    Google Scholar 

  • Dekeyser RA, Claes B, De Rycke RMU, Habets ME, Van Montagu MC, Caplan AB (1990). Plant Cell 2: 591–602.

    Google Scholar 

  • Dimitrov DS, Sowers AE (1990) Biochim. Biophys. Acta. 1022: 381–392.

    Google Scholar 

  • Donn G, Nilges M, Morocz S (1990) Abstract, 7th Int. Congress on Plant Tissue and Cell Culture, A2: 38–53.

    Google Scholar 

  • D'Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Plant Cell 4: 1495–1505.

    Google Scholar 

  • Fromm ME, Fionnuala M, Armstrong C, Rosalind W, Thomas J, Klein TM (1990) Bio/Technology 8: 833–839.

    Google Scholar 

  • Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VL (1990) EMBO J. 9: 2517–2522.

    Google Scholar 

  • Gordon-Kamm WJ, Lemaux PG (1992) Plant Mol. Biol. 18: 201–210.

    Google Scholar 

  • Hayashimoto A, Li Z, Murai N (1990) Plant Physiol 93: 857–863.

    Google Scholar 

  • He DG, Tanner G, Scott KJ (1986) Plant Sci. 45: 119–124.

    Google Scholar 

  • Hodal L, Bochardt A, Nielsen JE, Mattsson O, Okkels FT (1992) Plant Science 87: 115–122.

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J. 6: 3901–3907.

    Google Scholar 

  • Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S (1992) Bio/Technology 10: 286–291.

    Google Scholar 

  • Klenchin VA, Sukharev SI, Serov SM, Chemomordik LV, Chizmadzhev YuA (1991) Biophys. J. 60: 804–811.

    Google Scholar 

  • Lindsey K, Jones MGK (1987) Plant Mol.Biol. 10: 43–52.

    Google Scholar 

  • McElroy D, Zhang W, Wu R (1990) Plant Cell 2: 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR, Müller B, Schulze J, Kolesnikov V, Zelenin A (1989) Theor. Appl. Genet. 78: 31–34.

    Google Scholar 

  • Morikawa H, Iida A, Matsui C, Ikegami M, Yamada Y (1986) Gene 41: 121–124.

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) EMBO J. 1: 841–845.

    Google Scholar 

  • Shimamoto K, Terada R, Izaawa T, Fujimoto H (1989) Nature 337: 274–276.

    Google Scholar 

  • Songstad DD, Halaka FG, DeBoer DL, Armstrong CL, Hinchee MAW, Ford-Santino CG, Brown SM, Fromm ME, Horsch RB (1993) Pl. Cell Tis. Organ Culture 33: 195–201.

    Google Scholar 

  • Tada Y, Sakamoto M, Fujimura T (1990) Theor. Appl. Genet. 80: 475–480.

    Google Scholar 

  • Vasil V, Redway F, Vasil IK (1990) Bio/Technology 8: 429–433.

    Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Bio/Technology 10: 667–674.

    Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Plant Mol. Biol. 18: 189–200.

    Google Scholar 

  • Xie TD, Sun L, Zhao HG, Fuchs JA, Tsong TY (1992) Biophys. J. 63: 1026–1031.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klöti, A., Iglesias, V.A., Wünn, J. et al. Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Reports 12, 671–675 (1993). https://doi.org/10.1007/BF00233417

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233417

Keywords

Navigation