Skip to main content
Log in

Chloroplast targeting ofneomycin phosphotransferase II with a pea transit peptide in electroporated barley mesophyll protoplasts

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Routine methods for stable gene transfer to cereals are not yet available. To be able to study chloroplast targeting in barley (Hordeum vulgare L.) cells, the expression of recombinant genes was assayed in barley mesophyll protoplasts after electroporation of DNA. The CaMV 35S transcript promoter was attached to a chimeric gene consisting of a pea RuBisCo small subunit transit peptide coding sequence (tp) and the gene coding for neomycin phosphotransferase II (nptII). As a control, a construction with no transit peptide coding segment was used. 48 hours after electroporation, a fraction of the protoplasts was lysed and intact chloroplasts were isolated. Protoplasts electroporated with either of the gene constructions showed strong NPTII activity. However, enzyme activity was detected in chloroplasts only when thetp-nptII gene construction was used. Protease treatment of the chloroplasts confirms that the pea RuBisCo small subunit transit peptide is targeting the NPTII polypeptide into the chloroplasts, subsequent to the synthesis of the hybrid precursor in barley cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

2,4-D:

2,4-dichlorophenoxyacetic acid

EDTA:

ethylene diamine tetraacetic acid

HEPES:

N-2-hydroxyethyl-piperazine-N′-2-ethanesulfonic acid

MES:

2-[N-morpholino] ethanesulfonic acid

NPTII:

neomycin phosphotransferase II

nptII :

gene for NPTII

RuBisCo:

ribulose 1,5-bisphosphate carboxylase

TP:

transit peptide

tp :

TP coding sequence

Tris:

tris(hydroxymethyl) aminomethane

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Science 232:738–743

    Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Gene 19:327–336

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 6:1513–1523

    Google Scholar 

  • Cashmore AR (1983) In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic Engineering of Plants. An Agricultural Perspective, Plenum Press, New York, pp 29–38

    Google Scholar 

  • Cline K, Werner-Washburne M, Andrews J & Keegstra K (1984) Plant Physiol 75:675–678

    Google Scholar 

  • Coruzzi G, Broglie R, Lamppa G, Chua N-H (1983) In: Ciferri O, Dure III L (eds) Structure and Function of Plant Genomes, Plenum Press, New York, pp 47–59

    Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) EMBO J 6:2513–2518

    Google Scholar 

  • De Greve H, Dhaese P, Seurink J, Lemmers M, Van Montagu M, Schell J (1982) J Mol Appl Gen 1:499–511

    Google Scholar 

  • de la Pena A, Lörz H, Schell J (1987) Nature 325:274–276

    Google Scholar 

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) J Mol Appl Genet 1:561–573

    Google Scholar 

  • Ellis JG, Llewellyn DJ, Dennis ES, Peacock WJ (1987) EMBO J 6:11–16

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Proc Natl Acad Sci USA 82:5824–5828

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Exp Cell Res 50:151–158

    Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Plant Cell Reports 6:265–270

    Google Scholar 

  • Kaiser G, Martinoia E, Wiemken A (1982) Z Pflanzenphysiol 107:103–113

    Google Scholar 

  • Keith B, Chua N-H (1986) EMBO J 5:2419–2425

    Google Scholar 

  • Lamppa G, Nagy F, Chua N-H (1985) Nature 316:750–752

    Google Scholar 

  • Lörz H, Baker B, Schell J (1985) Mol Gen Genet 199:178–182

    Google Scholar 

  • Mishkind ML, Wessler SR, Schmidt GW (1985) J Cell Biol 100:226–234

    Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Nature 313:810–812

    Google Scholar 

  • Ou-Lee T-M, Turgeon R, Wu R (1986) Proc Natl Acad Sci USA 83:6815–6819

    Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) Gene 30:211–218

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Science 240:204–207

    Google Scholar 

  • Schmidt GW, Mishkind ML (1986) Ann Rev Biochem 55:879–912

    Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeck P (1986) Cell 46:365–375

    Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Bio/Technology 6:1072–1074

    Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Nature 328:33–37

    Google Scholar 

  • Van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Van Montagu M, Herrera-Estrella L (1985) Nature 313:358–363

    Google Scholar 

  • Vasil IK (1988) Bio/Technology 6:397–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teeri, T.H., Patel, G.K., Aspegren, K. et al. Chloroplast targeting ofneomycin phosphotransferase II with a pea transit peptide in electroporated barley mesophyll protoplasts. Plant Cell Reports 8, 187–190 (1989). https://doi.org/10.1007/BF00778528

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00778528

Keywords

Navigation