Skip to main content

Termite Gut Microbiome

  • Chapter
  • First Online:
Termites and Sustainable Management

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Termites depend on their gut microbes for digestion of complex polysaccharides of wood into simpler molecules. Cellulose is a major polymeric carbohydrate present in the wood which is broken down to simpler byproducts through metabolic steps by the hindgut microbes. Termite gut microbes also produce gases during the cellulose degradation process, of which methane is the major product. Gut microbes belong to three major groups, namely, bacteria, archaea and protozoa. They show a mutualistic relationship and typically convert 95% of cellulose into simple sugars within 24 h. More than 200 species of microbes form this community, producing different types of wood-busting enzymes, mainly cellulases, cellubiases, hemicellulases, glucosidases and gluconases, during wood degradation. Studies suggest that lower termites utilize both endogenous and protozoal enzymes for cellulose digestion, while higher termites acquire enzymes from their diet instead of protozoal enzymes. Some termite species change their feeding habits with seasonal variations. These affect gut microbes population and therefore are responsible for enhancing their survival under changed environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen, D. K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Frøslev, T., Rosendahl, S., & Boomsma, J. J. (2002). The evolution of fungus growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences of the United States of America, 99, 14887–14892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aanen, D. K., Ros, V. I. D., Licht, H. H. D., Mitchell, J., de Beer, Z. W., Slippers, B., Rouland-Lefevre, C., & Boomsma, J. J. (2007). Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evolutionary Biology, 7, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abe, Y., Bignell, D. E., & Higashi, M. (2000). Termites: Evolution, sociality, symbioses, ecology (p. 466). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Thomas, P., Garcia, J. L., & Patel, B. K. (1998). Aminobacterium colombiense sp. nov., an amino-acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe, 4, 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Baena, S., Fardeau, M. L., Ollivier, B., Labat, M., Thomas, P., Garcia, J. L., & Patel, B. K. (1999a). Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. International Journal of Systematic Bacteriology, 49, 975–982.

    Article  CAS  PubMed  Google Scholar 

  • Baena, S., Fardeau, M. L., Woo, T. H., Ollivier, B., Labat, M., & Patel, B. K. (1999b). Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. International Journal of Systematic Bacteriology, 49, 969–974.

    Article  CAS  PubMed  Google Scholar 

  • Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Garcia, J. L., & Patel, B. K. (2000). Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 50, 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Bandi, C., Sironi, M., Damiani, G., Magrassi, L., Nalepa, C. A., Laudani, U., & Sacchi, L. (1995). The establishment of intracellular symbiosis in an ancestor of cockroaches and termite. Proceedings of the Royal Society of London – Series B: Biological Sciences, 259, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, S., Tholen, A., Overmann, J., & Brune, A. (2000). Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture dependent techniques. Archives of Microbiology, 173, 126–173.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold, M., Ludwig, W., & Konig, H. (1994). 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiology Letters, 123, 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Bignell, D. E. (1994). Soil-feeding and gut morphology in higher termites. In J. H. Hunt & C. A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 131–158). Boulder: Westview Press.

    Google Scholar 

  • Bignell, D. E. (2000). Introduction to symbiosis. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 189–208). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 363–387). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bloodgood, R. A., & Fitzharris, T. P. (1976). Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach Cryptocercus. Cytobios, 17, 103–122.

    CAS  PubMed  Google Scholar 

  • Boga, H., & Brune, A. (2003). Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Applied and Environmental Microbiology, 69, 779–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauman, A., Kane, M. D., Labat, M., & Breznak, J. A. (1992). Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science, 257, 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  • Braun, S. T., Proctor, L. M., Zani, S., Mellon, M. T., & Zehr, J. P. (1999). Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiology Ecology, 28, 273–279.

    Article  CAS  Google Scholar 

  • Breznak, J. A. (1975). Symbiotic relationships between termites and their intestinal microbiota. In D. H. Jennings & D. L. Lee (Eds.), Symbiosis (Society for experimental biology symposium ser., no. 29) (pp. 559–580). Cambridge: Cambridge University Press.

    Google Scholar 

  • Breznak, J. A. (1984). Biochemical aspects of symbiosis between termites and their intestinal microbiota. In J. M. Anderson, A. D. M. Rayner, & D. W. H. Walton (Eds.), Invertebrate microbial interactions (pp. 173–203). London: Cambridge University Press.

    Google Scholar 

  • Breznak, J. A. (1994). Acetogenesis from carbon dioxide in termite guts. In H. L. Drake (Ed.), Acetogenesis (pp. 303–330). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Breznak, J. A. (2000). Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbiosis, ecology (pp. 209–231). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Breznak, J. A. (2002). Phylogenetic diversity and physiology of termite gut spirochetes. Integrative and Comparative Biology, 42, 313–318.

    Article  PubMed  Google Scholar 

  • Breznak, J. A., & Blum, J. S. (1991). Mixotrophy in the termite gut acetogen, Sporomusa termitida. Archives of Microbiology, 156, 105–110.

    Article  CAS  Google Scholar 

  • Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  CAS  Google Scholar 

  • Breznak, J. A., & Switzer, J. M. (1986). Acetate synthesis from H2 plus CO2 by termite gut microbes. Applied and Environmental Microbiology, 52, 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugerolle, G. (2005). The amoeboid parabasalid flagellate Gigantomonas herculea of the African termite Hodotermes mossambicus reinvestigated using immunological and ultrastructural techniques. Acta Protozoologica, 44, 189–199.

    Google Scholar 

  • Brune, A. (2007). Microbiology: Woodworker’s digest. Nature, 450, 487–488.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A. (2014). The family Elusimicrobiaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (Vol. 11., 4th ed, pp. 637–640). Berlin: Springer Verlag.

    Google Scholar 

  • Brune, A., & Friedrich, M. (2000). Microecology of the termite gut: Structure and function on a microscale. Current Opinion in Microbiology, 3, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A., & Kuhl, M. (1996). pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. Journal of Insect Physiology, 42, 1121–1127.

    Article  CAS  Google Scholar 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • Brune, A., Emerson, D., & Breznak, J. A. (1995). The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology, 61, 2681–2687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnum, K. E., Callister, S. J., Nicora, C. D., Purvine, S. O., Hugenholtz, P., Warnecke, F., Scheffrahn, R. H., Smith, R. D., & Lipton, M. S. (2011). Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. The ISME Journal, 5, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Canale-Parola, E. (1984). Order I. Spirochaetales Buchanan 1917, 163AL. In N. R. Krieg & J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (pp. 38–39). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology, 52, 297–354.

    Article  CAS  PubMed  Google Scholar 

  • Charon, N. W., Greenberg, E. P., Koopman, M. B., & Limberger, R. J. (1992). Spirochaete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Research in Microbiology, 143, 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. S. (1995). Alcohol dehydrogenase: Multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiology Reviews, 17, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, V. L., & Funaoka, M. (1990). The difference between guaiacyl and guaiacyl-syringyl lignins in their responses to kraft delignification. Holzforschung, 44, 309–313.

    Article  CAS  Google Scholar 

  • Chien, Y. T., & Zinder, S. H. (1996). Cloning, functional organization, transcript studies, and phylogenetic analysis of the complete nitrogenase structural genes (nifHDK2) and associated genes in the archaeon Methanosarcina barkeri. Journal of Bacteriology, 178, 143–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland, L. R. (1926). Symbiosis among animals with special reference to termites and their intestinal flagellates. The Quarterly Review of Biology, 1, 51–64.

    Article  Google Scholar 

  • Cleveland, L. R., & Grimstone, A. V. (1964). The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proceedings of the Royal Society of London. Series B, Biological Sciences, 159, 668–686.

    Article  Google Scholar 

  • Cranshaw, W. (2013). Bugs rule: An introduction to the world of insects (p. 188). Princeton: Princeton University Press.

    Google Scholar 

  • Cummings, J. H., & Macfarlane, G. T. (1997). Role of intestinal bacteria in nutrient metabolism. JPEN, 21, 357–365.

    Article  CAS  Google Scholar 

  • Czolij, R., Slaytor, M., & O’Brien, R. W. (1985). Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae). Applied and Environmental Microbiology, 49, 1226–1236.

    Google Scholar 

  • Darlington, J. E. C. P. (1994). Nutrition and evolution in fungus-growing ants. In J. H. Hunt & C. A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 105–130). Boulder: Westview Press.

    Google Scholar 

  • Davis, E. C., Franklin, J. B., Shaw, A. J., & Vilgalys, R. (2003). Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. American Journal of Botany, 90, 1661–1667.

    Article  PubMed  Google Scholar 

  • De Fine Licht, H. H., Andersen, A., & Aanen, D. K. (2005). Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycological Research, 109, 314–318.

    Article  PubMed  Google Scholar 

  • Dean, D. R., & Jacobson, M. R. (1992). Biochemical genetics of nitrogenase. In G. Stacy, R. H. Burris, & H. J. Evans (Eds.), Biological nitrogen fixation (pp. 763–834). New York: Chapman and Hall.

    Google Scholar 

  • Delalibera, I., Handelsman, J., & Raffa, K. F. (2005). Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae) and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology, 34, 541–547.

    Article  Google Scholar 

  • Dietrich, C., Kohler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology, 80, 2261–2269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donovan, S. E., Purdy, K. J., Kane, M. D., & Eggleton, P. (2004). Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Applied and Environmental Microbiology, 70, 3884–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dow, J. A. T. (1986). Insect midgut function. Advances in Insect Physiology, 19, 188–328.

    Google Scholar 

  • Droge, S., Rachel, R., Radek, R., & Konig, H. (2008). Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. International Journal of Systematic and Evolutionary Microbiology, 58, 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, A., & Brune, A. (1997). Hydrogen concentration profiles at the oxic–anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology, 63, 4039–4046.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, M. S., Grimaldi, D. A., & Krishna, K. (2009). Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650, 1–27.

    Article  Google Scholar 

  • Esenther, G. R., & Kirk, T. K. (1974). Catabolism of aspen sapwood in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America, 67, 989–991.

    Article  CAS  Google Scholar 

  • Filley, T. R. (2003). In B. Goodell, D. D. Nicholas, & T. P. Schultz (Eds.), ACS symposium series in wood deterioration and preservation: Advances in our changing world (pp. 119–139). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Filley, T. R., Hatcher, P. G., Shortle, W. C., & Praseuth, R. T. (2000). The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Organic Geochemistry, 31, 181–198.

    Article  CAS  Google Scholar 

  • Filley, T. R., Nierop, K. G. J., & Wang, Y. (2006). The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies. Organic Geochemistry, 37, 711–727.

    Article  CAS  Google Scholar 

  • Frank, S. A. (1996). Host-symbiont conflict over the mixing of symbiotic lineages. Proceedings of the Royal Society of London B: Biological Sciences, 263, 339–344.

    Article  CAS  Google Scholar 

  • Frohlich, J., Sass, H., Babenzien, H.-D., Kuhnigk, T., Varma, A., Saxena, S., Nalepa, C., Pfeiffer, P., & Konig, H. (1999). Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Canadian Journal of Microbiology, 45, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman, J. A., McCallum, K., & Davis, A. A. (1993). Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Applied and Environmental Microbiology, 59, 1294–1302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, C. A. (2007). Fungistatic activity of freshly killed termite, Nasutitermes acajutlae, soldiers in the Caribbean. Journal of Insect Science, 7, 14.

    Article  PubMed Central  Google Scholar 

  • Gerbod, D., Sanders, E., Moriya, S., Noel, C., Takasu, H., Fast, N. M., Delgado-Viscogliosi, P., Ohkuma, M., Kudo, T., Capron, M., Palmer, J. D., Keeling, P. J., & Viscogliosi, E. (2004). Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Molecular Phylogenetics and Evolution, 31, 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Godon, J.-J., Moriniere, J., Moletta, M., Gaillac, M., Bru, V., & Delgenes, J.-P. (2005). Rarity associated with specific ecological niches in the bacterial world: The ‘Synergistes’ example. Environmental Microbiology, 7, 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Graber, J. R., & Breznak, J. A. (2000). Nutrition and physiological properties of termite gut spirochaetes. Abstracts of the American Society for Microbiology no. N-104.

    Google Scholar 

  • Graber, J. R., Leadbetter, J. R., & Breznak, J. A. (2004). Description of Treponema azonutricum sp. nov and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Applied and Environmental Microbiology, 70, 1307–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi, D. (2001). Insect evolutionary history from Handlirsch to Hennig, and beyond. Journal of Paleontology, 75, 1152–1160.

    Article  Google Scholar 

  • He, S., Ivanova, N., Kirton, E., Allgaier, M., Bergin, C., Scheffrahn, R. H., Kyrpides, N. C., Warnecke, F., Tringe, S. G., & Hugenholtz, P. (2013). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One, 8, e61126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herre, E. A., Mejia, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., & Van Bael, S. A. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550–558.

    Article  PubMed  Google Scholar 

  • Hethener, P., Braumann, A., & Garcia, J.-L. (1992). Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood feeding termite, Nasutitermes lujae. Systematic and Applied Microbiology, 15, 52–58.

    Article  CAS  Google Scholar 

  • Higashi, M., & Abe, T. (1997). Global diversification of termites driven by the evolution of symbiosis and sociality. In T. Abe, S. A. Levin, & M. Higashi (Eds.), Biodiversity: An ecological perspective (pp. 83–112). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience, Biotechnology, and Biochemistry, 74, 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  • Hongoh, Y. (2011). Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cellular and Molecular Life Sciences, 68, 1311–1325.

    Article  CAS  PubMed  Google Scholar 

  • Hongoh, Y., Ohkuma, M., & Kudo, T. (2003). Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiology Ecology, 44, 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Hongoh, Y., Deevong, P., Hattori, S., Inoue, T., Noda, S., Noparatnaraporn, N., Kudo, T., & Ohkuma, M. (2006). Phylogenetic diversity, localization and cell morphologies of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently found bacterial groups dominant in termite guts. Applied and Environmental Microbiology, 72, 6780–6788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn, M., Harzenetter, M. D., Linner, T., Schmid, E. N., Muller, K.-D., Michel, R., & Wagner, M. (2001). Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of ‘Candidatus Amoebophilus asiaticus.’. Environmental Microbiology, 3, 440–449.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X. F., Bakker, M. G., Judd, T. M., Reardon, K. F., & Vivanco, J. M. (2013). Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microbial Ecology, 65, 531–536.

    Article  PubMed  Google Scholar 

  • Hungate, R. E. (1946). Studies on cellulose fermentation. II. An anaerobic cellulose-decomposing actinomycete, Micromonospora propionici, n. sp. Journal of Bacteriology, 51, 51–56.

    CAS  PubMed Central  Google Scholar 

  • Husseneder, C. (2010). Symbiosis in subterranean termites: A review of insights from molecular studies. Environmental Entomology, 39, 378–388.

    Article  CAS  PubMed  Google Scholar 

  • Hyodo, F., Inoue, T., Azuma, J. I., Tayasu, I., & Abe, T. (2000). Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biology and Biochemistry, 32, 653–658.

    Article  CAS  Google Scholar 

  • Hyodo, F., Tayasu, I., Inoue, T., Azuma, J.-I., Kudo, T., & Abe, T. (2003). Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Functional Ecology, 17, 186–193.

    Article  Google Scholar 

  • Iida, T., Ohkuma, M., Ohtoko, K., & Kudo, T. (2000). Symbiotic spirochetes in the termite hindgut: Phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiology Ecology, 34, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda-Ohtsubo, W., & Brune, A. (2009). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Molecular Ecology, 18, 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Murashima, K., Azuma, J.-I., Sugimoto, A., & Slaytor, M. (1997). Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology, 43, 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Kitade, O., Yoshimura, T., & Yamaoka, I. (2000). Symbiotic associations with protists. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 275–288). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johjima, T., Taprab, Y., Noparatnaraporn, N., Kudo, T., & Ohkuma, M. (2006). Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Applied Microbiology and Biotechnology, 73, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R. A. (1981). Colony development and establishment of the fungus comb in Microtermes sp. nr. Usambaricus (Sjöst) (Isoptera, Macrotermitinae) from Nigeria. Insectes Sociaux, 28, 3–12.

    Article  Google Scholar 

  • Kane, M. D., & Breznak, J. A. (1991). Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Archives of Microbiology, 156, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Kane, M. D., Brauman, A., & Breznak, J. A. (1991). Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Archives of Microbiology, 156, 99–104.

    Article  CAS  Google Scholar 

  • Kappler, A. (1999). Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Applied Soil Ecology, 13, 3.

    Article  Google Scholar 

  • Katoh, H., Miura, T., Maekawi, K., Shinzato, N., & Matsumoto, T. (2002). Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Molecular Ecology, 11, 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  • Katsumata, K. S., Jin, Z. F., Hori, K., & Iiyama, K. (2007). Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. Journal of Wood Science, 53, 419–426.

    Article  CAS  Google Scholar 

  • Katzin, L. I., & Kirby, H. (1939). The relative weight of termites and their protozoa. The Journal of Parasitology, 25, 444–445.

    Article  Google Scholar 

  • Khalil, M. A. K., Rasmussen, R. A., French, J. R., & Holt, J. (1990). The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N2O, CO, H2, and light hydrocarbons. Journal of Geophysical Research, 95, 3619–3634.

    Article  Google Scholar 

  • Kirk, P. M., Canno, P. F., David, J. C., & Stalpers, J. A. (2001). Ainsworth & Bigby’s dictionary of the fungi. Wallingford: CAB International.

    Google Scholar 

  • Kirshtein, J. D., Paerl, H. W., & Zehr, J. (1991). Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. Applied and Environmental Microbiology, 57, 2645–2650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitade, O., Maeyama, T., & Matsumoto, T. (1997). Establishment of symbiotic flagellate fauna of Hodotermopsis japonica (Isoptera: Termopsidae). Sociobiology, 30, 161–167.

    Google Scholar 

  • Korb, J., & Linsenmair, K. E. (2000a). Thermoregulation of termite mounds: What role does ambient temperature and metabolism of the colony play? Insectes Sociaux, 47, 357–363.

    Article  Google Scholar 

  • Korb, J., & Linsenmair, K. E. (2000b). Ventilation of termite mounds: New results require a new model. Behavioral Ecology, 11, 486–494.

    Article  Google Scholar 

  • Krasil’nikov, N. A., & Satdykov, S. I. (1970). Bacteria of termites’ intestines. Microbiology, 39, 562–564.

    Google Scholar 

  • Kudo, T., Ohkuma, M., Moriya, S., Noda, S., & Ohtoko, K. (1998). Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles, 2, 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H., & Konig, H. (1996). A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology, 19, 139–149.

    Article  CAS  Google Scholar 

  • Kukor, J., Cowan, D., & Martin, M. (1988). The role of ingested fungal enzymes in cellulose digestion in the larvae of cerambycid beetles. Physiological Zoology, 61, 364–371.

    Article  CAS  Google Scholar 

  • Leadbetter, J. R., & Breznak, J. A. (1996). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology, 62, 3620–3631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leadbetter, J. R., Crosby, L. D., & Breznak, J. A. (1998). Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Archives of Microbiology, 169, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter, J. R., Schmidt, T. M., Graber, J. R., & Breznak, J. A. (1999). Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science, 283, 686–689.

    Article  CAS  PubMed  Google Scholar 

  • Leidy, J. (1877). On the intestinal parasites of Termes flavipes. Proceedings of the Academy of Natural Sciences (Philadelphia), 29, 146–149.

    Google Scholar 

  • Leidy J (1874–1881) The parasites of the termites. Journal of the Academy of Natural Sciences (Philadelphia) 8, 425–447.

    Google Scholar 

  • Li, Z. Q., Liu, B. R., Zeng, W. H., Xiao, W. L., Li, Q. J., & Zhong, J. H. (2013). Character of cellulase activity in the guts of flagellate-free termites with different feeding habits. Journal of Insect Science, 13, 1–8.

    CAS  Google Scholar 

  • Lilburn, T. G., Kim, K. S., Ostrom, N. E., Byzek, K. R., Leadbetter, J. R., & Breznak, J. A. (2001). Nitrogen fixation by symbiotic and free-living spirochaetes. Science, 292, 2495–2498.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Zhang, L., Zhou, H., Zhang, M., Yan, X., Wang, Q., Long, Y., Xie, L., Wang, S., Huang, Y., & Zhou, Z. (2013). Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS One, 8, e69184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, N. (2003). Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Molecular Biology and Evolution, 20, 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Makonde, H. M., Boga, H. I., Osiemo, Z., Mwirichia, R., Mackenzie, L. M., Goker, M., & Klenk, H. P. (2013). 16S-rRNA-based analysis of bacterial diversity in the gut of fungus-cultivating termites (Microtermes and Odontotermes species). Antonie van Leeuwenhoek, 104, 869–883.

    Article  PubMed  Google Scholar 

  • Mauldin, J. K. (1977). Cellulose catabolism and lipid synthesis by normally and abnormally faunated termites, Reticulitermes flavipes. Insect Biochemistry, 7, 27–31.

    Article  CAS  Google Scholar 

  • Mikaelyan, A., Strassert, J. F. H., Tokuda, G., & Brune, A. (2014). The fiber-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.) Environmental Microbiology, 16, 2711–2722.

    Article  CAS  Google Scholar 

  • Moriya, S., Dacks, J. B., Takagi, A., Noda, S., Ohkuma, M., Doolittle, W. F., & Kudo, T. (2003). Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. The Journal of Eukaryotic Microbiology, 50, 190–197.

    Article  PubMed  Google Scholar 

  • Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M., & Malloch, D. (2001). The origin of the attine ant-fungus mutualism. The Quarterly Review of Biology, 76, 169–197.

    Article  CAS  PubMed  Google Scholar 

  • Nalepa, C. A., Bignell, D. E., & Bandi, C. (2001). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insectes Sociaux, 48, 194–201.

    Article  Google Scholar 

  • Nobre, T., Rouland-Lefevre, C., & Aanen, D. K. (2011). Comparative biology of fungus cultivation in termites and ants. In D. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 193–210). Dordrecht: Springer.

    Google Scholar 

  • Noda, S., Ohkuma, M., Usami, R., Horikoshi, K., & Kudo, T. (1999). Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Applied and Environmental Microbiology, 65, 4935–4942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y., & Kudo, T. (2003). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Applied and Environmental Microbiology, 69, 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda, S., Hongoh, Y., Sato, T., & Ohkuma, M. (2009). Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evolutionary Biology, 9, 158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noirot, C., & Noirot-Timothee, C. (1969). The digestive system. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (pp. 49–88). New York: Academic Press.

    Chapter  Google Scholar 

  • O’Brien, R. W., & Slaytor, M. (1982). Role of microorganisms in the metabolism of termites. Australian Journal of Biological Sciences, 35, 239–262.

    Google Scholar 

  • Odelson, D. A., & Breznak, J. A. (1983). Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Applied and Environmental Microbiology, 45, 1602–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M. (1998). Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiology Letters, 164, 389–395.

    Article  CAS  Google Scholar 

  • Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 413–438). Dordrecht: Springer.

    Google Scholar 

  • Ohkuma, M., & Kudo, T. (1996). Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology, 62, 461–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M., Noda, S., Usami, R., Horikoshi, K., & Kudo, T. (1996). Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology, 62, 2747–2752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M., Noda, S., & Kudo, T. (1999). Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Applied and Environmental Microbiology, 65, 4926–4934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., Yamada, A., Vongkaluang, C., Sarnthoy, O., Kirtibutr, N., Noparatnaraporn, N., Kudo, T., & Inoue, T. (2004). Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Molecular Phylogenetics and Evolution, 31, 701–710.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Iida, T., Ohtoko, K., Yuzawa, H., Noda, S., Viscogliosi, E., & Kudo, T. (2005). Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Molecular Phylogenetics and Evolution, 35, 646–655.

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma, M., Noda, S., Hongoh, Y., Nalepa, C. A., & Inoue, T. (2009). Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proceedings of the Royal Society of London – Series B: Biological Sciences, 276, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Osono, T., & Takeda, H. (1999). Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. European Journal of Soil Biology, 35, 51–56.

    Article  Google Scholar 

  • Paster, B. J., Dewhirst, F. E., Weisburg, W. G., Tordoff, L. A., Fraser, G. J., Hespell, R. B., Stanton, T. B., Zablen, L., Mandelco, L., & Woese, C. R. (1991). Phylogenetic analysis of the spirochetes. Journal of Bacteriology, 173, 6101–6109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paster, B. J., Dewhirst, F. E., Cooke, S. M., Fussing, V., Poulsen, L. K., & Breznak, J. A. (1996). Phylogeny of not-yet-cultured spirochetes from termite guts. Applied and Environmental Microbiology, 62, 347–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potrikus, C. J., & Breznak, J. A. (1980). Uric acid-degrading bacteria in guts of termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology, 40, 117–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacek, P., Brandstetr, J., Soukal, F., & Opravil, T. (2013). Investigation of subterranean termites nest material composition, structure and properties. In Y. Mastai (Ed.), Materials science-advanced topics. London: InTech. https://doi.org/10.5772/55145.

    Google Scholar 

  • Radek, R., & Nitsch, G. (2007). Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: Attachment and cyst formation. European Journal of Protistology, 43, 281–294.

    Article  PubMed  Google Scholar 

  • Rainey, F. A., Ward-Rainey, N. L., Janssen, P. H., Hippe, H., & Stackebrandt, E. (1996). Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology, 142, 2087–2095.

    Article  CAS  PubMed  Google Scholar 

  • Rees, G. N., Patel, B. K., Grassia, G. S., & Sheehy, A. J. (1997). Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. International Journal of Systematic Bacteriology, 47, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Rieu-Lesme, F., Dauga, C., Morvan, O., Bouvet, P., Grimont, P. A., & Dore, J. (1996). Acetogenic coccoid spore-forming bacteria isolated from the rumen. Research in Microbiology, 147, 753–764.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, J. D. (2000). Thoughts and musings on tropical Xylariaceae. Mycological Research, 104, 1412–1420.

    Article  Google Scholar 

  • Rogers, J. D., YM, J., & Lehmann, J. (2005). Some Xylaria species on termite nests. Mycologia, 97, 914–923.

    Article  PubMed  Google Scholar 

  • Rouland, C., Lenoir, F., & Lepage, M. (1991). The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comparative Biochemistry and Physiology. Part A, Physiology, 99, 657–663.

    Article  Google Scholar 

  • Rouland-Lefevre, C., Diouf, M. N., Brauman, A., & Neyra, M. (2002). Phylogenetic relationships in Termitomyces (Family Agaricaceae) based on the nucleoticle sequence of ITS: A first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Molecular Phylogenetics and Evolution, 22, 423–429.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson, M. G. (1996). Biomass of termites and their emissions of methane and carbon dioxide: A global database. Global Biogeochem Cycles, 10, 543–557.

    Article  CAS  Google Scholar 

  • Scharf, M. E., Karl, Z. J., Sethi, A., & Boucias, D. G. (2011). Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One, 6, e21709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer, C., Thompson, C. L., & Brune, A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology, 78, 2758–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss, P. D., Delalibera, I., Handelsman, J., & Raffa, K. F. (2006). Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology, 35, 625–629.

    Article  Google Scholar 

  • Schmitt-Wagner, D., Friedrich, M. W., Wagner, B., & Brune, A. (2003). Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp). Applied and Environmental Microbiology, 69, 6007–6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, H. N. (1992). The genus Bacteroides and related taxa. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, & K. H. Schleifer (Eds.), The Prokaryotes (pp. 3593–3607). New York: Springer.

    Chapter  Google Scholar 

  • Shary, S., Ralph, S. A., & Hammel, K. E. (2007). New insights into the ligninolytic capability of a wood decay ascomycete. Applied and Environmental Microbiology, 73, 6691–6694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shellman-Reeve, J. S. (1997). In J. C. Choe & B. J. Crespi (Eds.), Social competition and cooperation in insects and arachnids (pp. 52–93). Cambridge: Cambridge University Press.

    Google Scholar 

  • Shinzato, N., Matsumoto, T., Yamaoka, I., Oshima, T., & Yamagishi, A. (2001). Methanogenic symbionts and the locality of other host lower termites. Microbes and Environments, 16, 43–47.

    Article  Google Scholar 

  • Shinzato, N., Muramatsu, M., Matsui, T., & Watanabe, Y. (2005). Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Bioscience, Biotechnology, and Biochemistry, 69, 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, R. (1983). Establishment of fungus comb in laboratory colonies of Macrotermes michaelseni and Odontotermes montanus (Isoptera, Macrotermitinae). Insectes Sociaux, 30, 204–209.

    Article  Google Scholar 

  • Simpson, A. G. B. (2006). Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and Evolution, 23, 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Stingl, U., Maass, A., Radek, R., & Brune, A. (2004). Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite- associated lineage of Bacteroidales: Description of ‘Candidatus Vestibaculum illigatum’. Microbiology, 150, 2229–2235.

    Article  CAS  PubMed  Google Scholar 

  • Stingl, U., Radek, R., Yang, H., & Brune, A. (2005). “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Applied and Environmental Microbiology, 71, 1473–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surkov, A. V., Dubinina, G. A., Lysenko, A. M., Glockner, F. O., & Kuever, J. (2001). Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate and sulfur-reducing bacteria from ‘Thiodendron’ sulfur mats in different saline environments. International Journal of Systematic and Evolutionary Microbiology, 51, 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Taprab, Y., Johjima, T., Maeda, Y., Moriya, S., Trakulnaleamsai, S., Noparatnaraporn, N., Ohkuma, M., & Kudo, T. (2005). Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Applied and Environmental Microbiology, 71, 7696–7704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayasu, I., Sugimoto, A., Wada, E., & Abe, T. (1994). Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften, 81, 229–231.

    Article  Google Scholar 

  • Tellam, R. L., Wijffels, G., & Willadsen, P. (1999). Peritrophic matrix proteins. Insect Biochemistry and Molecular Biology, 29, 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Thayer, D. W. (1976). Facultative wood-digesting bacteria from the hind-gut of the termite Reticulitermes hesperus. Journal of General Microbiology, 95, 287–296.

    Article  Google Scholar 

  • Tholen, A., & Brune, A. (1997). Location and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil feeding higher termites (Cubitermes spp). Applied and Environmental Microbiology, 65, 44975–44405.

    Google Scholar 

  • Tholen, A., & Brune, A. (2000). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environmental Microbiology, 2, 436–449.

    Article  CAS  PubMed  Google Scholar 

  • Thorne, B. L. (1997). Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 27–54.

    Article  Google Scholar 

  • Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-β -1,4-glucanase. Zoological Science, 14, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Tokuda, G., Yamaoka, I., & Noda, H. (2000). Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Applied and Environmental Microbiology, 66, 2199–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokura, M., Ohkuma, M., & Kudo, T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiology Ecology, 33, 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Veivers, P. C., Muhlemann, R., Slaytor, M., Leuthold, R. H., & Bignell, D. E. (1991). Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjostedt. Journal of Insect Physiology, 37, 675–682.

    Article  CAS  Google Scholar 

  • Waller, D. A. (1988). Ecological similarities of fungus growing ants (Attini) and termites (Macrotermitinae). In J. C. Trager & E. J. Brill (Eds.), Advances in myrmecology (pp. 337–345). New York: E. J. Brill.

    Google Scholar 

  • Warnecke, F., Luginbuhl, P., Ivanova, N., et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.

    Article  CAS  PubMed  Google Scholar 

  • Wenzel, M., Radek, R., Brugerollec, G., & Konig, H. (2003). Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. European Journal of Protistology, 39, 11–23.

    Article  Google Scholar 

  • Widmer, F., Shaffer, B. T., Porteous, L. A., & Seidler, R. J. (1999). Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade mountain range. Applied and Environmental Microbiology, 65, 374–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, T. G., & Thomas, R. J. (1989). The mutualistic association between Macrotermitinae and Termitomyces. In N. Wilding, N. M. Collins, P. M. Hammond, & J. F. Webber (Eds.), Insect-fungus interactions (pp. 69–92). New York: Academic Press.

    Chapter  Google Scholar 

  • Yamaoka, I., & Nagatani, Y. (1980). Phagocytic cells in the midgut epithelium of the termite, Reticulitermes speratus (Kolbe). Zoological Magazine, 89, 308–311.

    Google Scholar 

  • Yamin, M. A. (1979). Termite flagellates. Sociobiology, 4, 1–119.

    Google Scholar 

  • Zavarzina, D. G., Zhilina, T. N., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., & Bonch-Osmolovskaya, E. A. (2000). Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. International Journal of Systematic and Evolutionary Microbiology, 50, 1287–1295.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navodita Maurice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurice, N., Erdei, L. (2018). Termite Gut Microbiome. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_4

Download citation

Publish with us

Policies and ethics