Skip to main content

Abstract

Progress in understanding the symbiosis between protists and termites has not matched that between prokaryotes and termites. Methods are now available for the isolation of pure cultures of trichomonads and hypermastigids, although only a few have been cultivated. Sufficient molecular data are now available to construct tentative phylogenetic trees. Molecular data indicate that these organisms are amongst the most primitive eukaryotes lacking mitochondria; the trichomonads also use a prokaryote-like 70S ribosome. In metabolic terms, more is known about the cellulolytic protists but only in outline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, B.J. (1930) Method and rate of protozoan refaunation in the termite Termopsis angusticollis Hagen. University of California Publications in Zoölogy 33, 449–470.

    Google Scholar 

  2. Azuma, J., et al. (1993) Studies on digestive system of termites III. Digestibility of xylan by termite Reticulitermes speratus (Kolbe). Wood Research 79, 41–51.

    CAS  Google Scholar 

  3. Berchtold, M., Breunig, A. and König, H. (1995) Culture and phylogenetic characterization of Trichomitus trypanoides Dubosq and Grassé 1924, n.comb.: A trichomonad flagellate isolated from the hindgut of the termite Reticulitermes santonensis Feytaud. The Journal of Eukaryotic Microbiology 42, 388–391.

    Article  CAS  PubMed  Google Scholar 

  4. Berchtold, M. and König, H. (1995) Phylogenetic position of the two uncultivated trichomonads Pen tatrichomonoides scroa Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwinensis Froggatt. Systematic and Applied Microbiology 18, 567–573.

    Article  Google Scholar 

  5. Bloodgood, R.A. (1975) Ultrastructure of the attachment of Pyrsonympha to the hind-gut wall of Reticulitermes tibialis. Journal of Insect Physiology 21, 391–399.

    Article  Google Scholar 

  6. Bobyleva, N.N. (1975) Morphology and evolution of intestinal parasitic flagellates of the Far-Eastern roach Cryptocercus relictus. Acta Protozoologica 14, 109160.

    Google Scholar 

  7. Boudreaux, H.B. (1979) Arthropod Phylogeny with Special Reference to Insects. Wiley and Sons, New York.

    Google Scholar 

  8. Bozner, P. (1997) Immunological detection and subcellular localization of HSP70 and HSP60 homologues in Trichomonas vaginalis. Journal of Parasitology 83, 224–229.

    Article  CAS  Google Scholar 

  9. Breznak, J.A. and Brune, A. (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39, 453–487.

    Article  CAS  Google Scholar 

  10. Brugerolle, G. and König, H. (1997) Ultrastructure and organization of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. The Journal of Eukaryotic Microbiology 44, 305–313.

    Article  Google Scholar 

  11. Brune, A., Emerson, D. and Breznak, J.A. (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61, 2681–2687.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bui, E.T.N., Bradley, P.J. and Johnson, P.J. (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proceedings of the National Academy of Sciences USA 93, 9651–9656.

    Article  CAS  Google Scholar 

  13. Carter, F.L., Mauldin, J.K. and Rich, N.M. (1981) Protozoan populations of Coptotermes formosanus Shiraki exposed to heartwood samples of 21 American species. Material und Organismen 16, 29–38.

    Google Scholar 

  14. Champney, W.S., Chittum, H.S. and Samuels, R. (1992) Ribosomes from trichomonad protozoa have prokaryotic characteristics. International Journal of Biochemistry 24, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  15. Cleveland, L.R. (1924) The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes jlavipes Koller. Biological Bulletin 46, 177–225.

    Google Scholar 

  16. Cleveland, L.R. and Grimstone, A.V. (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proceedings of the Royal Society of London. Series B, Biological Sciences 159, 668–686.

    Google Scholar 

  17. Cleveland, L.R., et al. (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences 17, 185–342.

    Article  Google Scholar 

  18. Dacks, J.B. and Redfield, R.J. (1998) Phylogenetic placement of Trichonympha. The Journal of Eukaryotic Microbiology 45, 445–447.

    Article  CAS  Google Scholar 

  19. Embley, T.M., Homer, D.A. and Hirt, R.P. (1997) Anaerobic eukaryote evolution: hydogenosomes as biochemically modified mitochondria? Trends in Ecology and Evolution 12, 437–441.

    Article  CAS  PubMed  Google Scholar 

  20. Emerson, A.E. (1935) Symbiosis between roaches and protozoa. (A review of Cleveland et al.,1934). Ecology 16116–117.

    Google Scholar 

  21. Esch, G.W., Bush, A.O. and Aho, J.M. (1990) Parasite Communities: Patterns and Processes. Chapman and Hall, London.

    Google Scholar 

  22. Eutick, M.L., et al. (1978) Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of Insect Physiology 24, 363–368.

    Article  CAS  Google Scholar 

  23. Fukami-Kobayashi, K., et al. (1996) Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family. FEBS Letters 385 214220.

    Google Scholar 

  24. Gennot, A., Philippe, H. and Le Guyader, H. (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proceedings of the National Academy of Sciences USA 93, 14614–14617.

    Article  Google Scholar 

  25. Grandcolas, P. (1994) Phylogenetic systematics of the subfamily Polyphaginae, with the assignment of Cryptocercus Scudder, 1862 to this taxon (Blattaria, Blattoidea, Polyphagidae). Systematic Entomology 19, 145–158.

    Google Scholar 

  26. Grandcolas, P. and Deleporte, P. (1992) La position systématique de Cryptocercus Scudder au sein des Blattas et ses implications évolutives. Comptes Rendus de l’Academie des Science. Série III 315, 317–322.

    Google Scholar 

  27. Grandcolas, P. and Deleporte, P. (1996) The origin of protistan symbionts in termites and cockroaches: A phylogenetic perspective. Cladistics 12, 93–98.

    Article  Google Scholar 

  28. Grassé, P.-P. (1952) Traite de Zoologie, Volume I, fasc. 1: Phylogenie. Protozoaires. Généralités. Flagellés. Masson et Cie, Paris.

    Google Scholar 

  29. Grassé, P.-P. and Noirot, C. (1945) La transmission des flagellés symbiotes et les aliments des termites. Bulletin Biologique de la France et de la Belgique 74, 273–290.

    Google Scholar 

  30. Gunderson, J., et al. (1995) Phylogeny of trichomonads inferred from small-subunit rRNA sequences. The Journal of Eukaryotic Microbiology 42, 411–415.

    Article  CAS  PubMed  Google Scholar 

  31. Guthrie, D.M. and Tindall, A.R. (1968) The Biology of the Cockroach. Edward Arnold Ltd., London.

    Google Scholar 

  32. Hausmann, K. and Hülsmann, N. (1996) Protozoology. Thieme Medical Publishers, Stuttgart.

    Google Scholar 

  33. Hennnig, W. (1981) Insect Phylogeny. Wiley, Chichester.

    Google Scholar 

  34. Honigberg, B.M. (1970) Protozoa associated with termites and their role in digestion. In Biology of Termites, Vol. II ( K. Krishna and F.M. Weesner, Eds.), pp. 1–36, Academic Press, New York.

    Google Scholar 

  35. Homer, D.S., et al. (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proceedings of the Royal Society of London. Series B, Biological Sciences 263, 1053–1059.

    Google Scholar 

  36. Inoue, T., et al. (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. Journal of Insect Physiology 43, 235–242.

    Article  CAS  Google Scholar 

  37. Kambhampati, S. (1996) Phylogenetic relationship among cockroach families inferred from mitochondrial 12S rRNA gene sequence. Systematic Entomology 21, 89–98.

    Google Scholar 

  38. Keeling, P.J., McFadden, G.I. and Poulsen, N. (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. The Journal of Eukaiyotic Microbiology 45, 643–650.

    Article  CAS  Google Scholar 

  39. Kitade, O., Maeyama, T. and Matsumoto, T. (1997) Establishment of symbiotic flagellate fauna of Hodotermopsis japonica (Isoptera: Termopsidae). Sociobiology 30, 161–167.

    Google Scholar 

  40. Kitade, O. and Matsomuto, T. (1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera). Symbiosis 25, 271278.

    Google Scholar 

  41. Kitade, O. and Matsumoto, T. (1993) Cluster analysis on symbiotic protistan fauna of termites and a wood-feeding cockroach Cryptocercus. In Endocytobiology V (T. Sato, M. Ichida and H. Ishikawa, Eds.), pp. 155159, Tübingen University Press, Tübingen.

    Google Scholar 

  42. Kitade, O. and Matsumoto, T. (1993) Symbiotic protistan faunae of Reticulitermes (Isoptera: Rhinotermitidae) in the Japan Archipelago. Sociobiology 23, 135–153.

    Google Scholar 

  43. Kyou, K., et al. (1996) Lignin modification by termite and its symbiotic protozoa. Wood Research 83, 50–54.

    CAS  Google Scholar 

  44. Lai, P.Y., Tamashiro, M. and Fujii, J.K. (1983) Abundance and distribution of the three species of symbiotic protozoa in the hindgut of Coptotermes formosanus (Isoptera: Rhinotermitidae). Proceedings of the Hawaiian Entomological Society 24, 271–276.

    Google Scholar 

  45. Lee, M.J., et al. (1987) Association of methanogenic bacteria with flagellated protozoa from a termite gut. Current Microbiology 15, 337–341.

    Article  Google Scholar 

  46. Lingle, W.L. and Salisbury, J.L. (1995) Ultrastructure of the parabasalid protist Holomastigotoides. The Journal of Eukaryotic Microbiology 42, 490–505.

    Article  Google Scholar 

  47. Messer, A.C. and Lee, M.J. (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microbial Ecology 18, 275–284.

    Article  CAS  Google Scholar 

  48. Moriya, S., Ohkuma, M. and Kudo, T. (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor la. Gene 210, 221–227.

    Article  CAS  PubMed  Google Scholar 

  49. Mukherjee, P. and Maiti, P.K. (1985) Two new species of flagellates of the genus Pyrsonympha Leidy (Mastigophora: Protozoa) from Reticulitermes tirapi Chhotani and Das. Proceedings of the Zoological Society (Calcutta) 38, 37–45.

    Google Scholar 

  50. Mukherjee, P. and Maiti, P.K. (1989) Description of two new species of flagellates of the genus Dinenympha Leidy (Mastigophora: Polymastigida) from Reticulitermes tirapi Chhotani. Archiv fir Protistenkunde 137, 91–96.

    Article  Google Scholar 

  51. Nalepa, C.A. (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proceedings of the Royal Society of London. Series B, Biological Sciences 246, 185–189.

    CAS  PubMed  Google Scholar 

  52. Noirot, C. and Noirot-Timothée, C. (1969) The digestive system. In Biology of Termites, Vol. I ( K. Krishna and F.M. Weesner, Eds.), pp. 49–88, Academic Press, New York.

    Google Scholar 

  53. O’Brien, G.W., et al. (1979) The origin and distribution of cellulase in the termites, Nasutitermes exitiosus and Coptotermes lacteus. Insect Biochemistry 9, 619–626.

    Article  Google Scholar 

  54. Odelson, D.A. and Breznak, J.A. (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Applied and Environmental Microbiology 45, 1602–1613.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Odelson, D.A. and Breznak, J.A. (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Applied and Environmental Microbiology 49, 622–626.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Odelson, D.A. and Breznak, J.A. (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Applied and Environmental Microbiology 49, 614–621.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ogimoto, K. and Imai, S. (1981) Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  58. Ohkuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 461–468.

    CAS  Google Scholar 

  59. Ohkuma, M., et al. (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit r RNA sequence. The Journal of Eukaryotic Microbiology 45, 439–444.

    Article  CAS  PubMed  Google Scholar 

  60. Radek, R. (1994) Monocercomonoides termites n. sp., an Oxymonad from the lower termite Kalotermes sinaicus. Archie far Protistenkunde 144, 373–382.

    Google Scholar 

  61. Radek, R. and Hausmann, K. (1994) Placojoenia sinaica n.g., n. sp., a symbiotic flagellate from the termite Kalotermes sinaicus. European Journal of Protistology 30, 25–37.

    Google Scholar 

  62. Roger, A.J., Clark, C.G. and Doolittle, W.F. (1996) A possible mitochondrial gene in the early branching amitochondriate protist Trichomonas vaginalis. Proceedings of the National Academy of Sciences USA 93, 14618–14622.

    Article  CAS  Google Scholar 

  63. Rösel, J., Radek, R. and Hausmann, K. (1996) Ultrastructure of the trichomonad flagellate Stephanonympha nelumbium. The Journal of Eukaryotic Microbiology 43, 505–511.

    Article  Google Scholar 

  64. Slaytor, M., Veivers, P.C. and Lo, N. (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochemistry and Molecular Biology 27, 291–303.

    Article  CAS  Google Scholar 

  65. Tamm, S L (1982) Flagellated ectosymbiotic bacteria propel a eukaryotic cell. The Journal of Cell Biology 94, 697–709.

    Article  CAS  PubMed  Google Scholar 

  66. Tamm, S L and Tanin, S (1976) Rotary movements and fluid membranes in termite flagellates. Journal of Cell Science 20, 619–639.

    CAS  PubMed  Google Scholar 

  67. Thorne, B.L. (1990) A case for ancestral transfer of symbionts between cockroaches and termites. Proceedings of the Royal Society of London. Series B, Biological Sciences 241, 37–41.

    CAS  PubMed  Google Scholar 

  68. Thorne, B.L. (1991) Ancestral transfer of symbionts between cockroaches and termites: an alternative hypothesis. Proceedings of the Royal Society of London. Series B, Biological Sciences 246, 191–195.

    CAS  PubMed  Google Scholar 

  69. Tsunoda, K., Ohmura, W. and Yoshimura, T. (1993) Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) (II) Presence of methanogenic bacteria and effect of food on methane emission rates. Japanese Journal of Environmental Entomology and Zoology 5, 166–174.

    Google Scholar 

  70. Veivers, P.C., O’Brien, R.W. and Slaytor, M. (1983) Selective defaunation of Mastotermes darwiniensis and its effect on cellulose and starch metabolism Insect Biochemistry 13, 95–101.

    Google Scholar 

  71. Waller, D.A. and La Fage, J.P. (1987) Food quality and foraging response by the subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Bulletin of Entomological Research 77, 417–424.

    Article  Google Scholar 

  72. Yamamoto, A., et al. (1997) Phylogenetic position of the mitochondrion-lacking protozoan Trichomonas tenax, based on amino acid sequence of elongation factor la and 2. Journal of Molecular Evolution 44, 98–105.

    Article  CAS  PubMed  Google Scholar 

  73. Yamaoka, I. (1979) Selective ingestion of food by the termite protozoa, Trichonympha agilis. Zoological Magazine (Dobutsugaku Zasshi) 88, 174–179.

    Google Scholar 

  74. Yamaoka, I., et al. (1983) Distribution of the intestinal flagellates in the hindgut of the termite, Reticulitermes speratus (Kolbe). Annals of Entomology 1 45–50.

    Google Scholar 

  75. Yamaoka, I. and Nagatani, Y. (1977) Cellulose digestion system in the termite, Reticulitermes speratus (Kolbe) II. Ultastructual changes related to the ingestion and digestion of cellulose by the flagellate, Trichonympha agilis. Zoological Magazine (Dobutsugaku Zasshi) 86, 34–42.

    Google Scholar 

  76. Yamaoka, I., Sasabe, K. and Terada, K. (1986) A timely infection of intestinal protozoa in the developing hindgut of the termite (Reticulitermes speratus). Zoological Science 3, 175–180.

    Google Scholar 

  77. Yamin, M.A. (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. Journal of Protozoology 25, 535–538.

    Article  Google Scholar 

  78. Yamin, M.A. (1979) Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi and Foà reported from lower termites (Isoptera families Mastotermitidae,Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4, 1–120.

    Google Scholar 

  79. Yamin, M.A. (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Applied and Environmental Microbiology 39, 859–863.

    CAS  Google Scholar 

  80. Yamin, M.A. (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211, 58–59.

    Article  CAS  PubMed  Google Scholar 

  81. Yamin, M.A. and Tamm, S L (1982) ATP reactivation of the rotary axostyle in termite flagellates: effects of dynein ATPase inhibitors. The Journal of Cell Biology 95, 589–597.

    Article  CAS  PubMed  Google Scholar 

  82. Yamin, M.A. and Trager, W. (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. Journal of General Microbiology 113, 417–420.

    Article  CAS  Google Scholar 

  83. Yoshimura, T., et al. (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) I. Effect of degree of polymerization of cellulose. Mokuzai Gakkaishi 39, 221–226.

    CAS  Google Scholar 

  84. Yoshimura, T., et al. (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) II. Selective defaunation of protozoa and its effect on cellulose metabolism. Mokuzai Gakkaishi 39, 227–230.

    CAS  Google Scholar 

  85. Yoshimura, T., et al. (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) III. Utilization of non-natural celluloses. Mokuzai Gakkaishi 39, 1322–1326.

    CAS  Google Scholar 

  86. Yoshimura, T., et al. (1995) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) V. Effect of crystallinity of cellulose. Mokuzai Gakkaishi 41, 206–210.

    CAS  Google Scholar 

  87. Yoshimura, T., et al. (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50, 99–104.

    Google Scholar 

  88. Yoshimura, T., Tsunoda, K. and Takahashi, M. (1992) Distribution of the symbiotic protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera; Rhinotermitidae). Japanese Journal of Environmental Entomology and Zoology 4, 115–120.

    Google Scholar 

  89. Yoshimura, T., Tsunoda, K. and Takahashi, M. (1994) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) IV. Seasonal changes of the protozoan fauna and its relation to wood-attacking activity. Mokuzai Gakkaishi 40, 853–859.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inoue, T., Kitade, O., Yoshimura, T., Yamaoka, I. (2000). Symbiotic Associations with Protists. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics