Skip to main content

Advertisement

Log in

Variations in Diversity and Richness of Gut Bacterial Communities of Termites (Reticulitermes flavipes) Fed with Grassy and Woody Plant Substrates

  • Short Commentary
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diets shape the animal gut microbiota, although the relationships between diets and the structure of the gut microbial community are not yet well understood. The gut bacterial communities of Reticulitermes flavipes termites fed on four individual plant biomasses with different degrees of recalcitrance to biodegradation were investigated by 16S rRNA pyrosequencing analysis. The termite gut bacterial communities could be differentiated between grassy and woody diets, and among grassy diets (corn stover vs. sorghum). The majority of bacterial taxa were shared across all diets, but each diet significantly enriched some taxa. Interestingly, the diet of corn stover reduced gut bacterial richness and diversity compared to other diets, and this may be related to the lower recalcitrance of this biomass to degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed  Google Scholar 

  2. Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333:101–104. doi:10.1126/science.1206025

    Article  PubMed  CAS  Google Scholar 

  3. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974. doi:10.1126/science.1198719

    Article  PubMed  CAS  Google Scholar 

  4. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka H, Aoyagi H, Shina S, Dodo Y, Yoshimura T, Nakamura R, Uchiyama H (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917. doi:10.1007/s00253-005-0215-3

    Article  PubMed  CAS  Google Scholar 

  6. Husseneder C, Berestecky JM, Grace JK (2009) Changes in composition of culturable bacteria community in the gut of the Formosan subterranean termite depending on rearing conditions of the host. Ann Entomo Soc America 102:498–507. doi:10.1603/008.102.0321

    Article  Google Scholar 

  7. Cardoso AM, Cavalcante JJV, Vieira RP, Lima JL, Grieco MAB, Clementino MM, Vasconcelos ATR, Garcia ES, de Souza W, Albano RM, Martins OB (2012) Gut bacterial communities in the giant land snail Achatina fulica and their modification by sugarcane-based diet. PLoS One 7:e33440. doi:10.1371/journal.pone.0033440

    Article  PubMed  CAS  Google Scholar 

  8. Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Netherlands, pp 439–475

    Google Scholar 

  9. Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci, Biotech, Biochem 74:1145–1151

    Article  CAS  Google Scholar 

  10. Laitung B, Chauvet E (2005) Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Archiv Fur Hydrobiologie 164:217–235

    Article  Google Scholar 

  11. Mille-Lindblom C, Fischer H, Tranvik LJ (2006) Litter-associated bacteria and fungi—a comparison of biomass and communities across lakes and plant species. Freshw Biol 51:730–741. doi:10.1111/j.1365-2427.2006.01532.x

    Article  Google Scholar 

  12. Wei H, Xu Q, Taylor Ii LE, Baker JO, Tucker MP, Ding S-Y (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338. doi:10.1016/j.copbio.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  13. Judd TM, Fasnacht MP (2007) Distribution of micronutrients in social insects: a test in the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the ant Myrmica punctiventris (Hymenoptera: Formicidae). Ann Entomo Soc America 100:893–899

    Article  Google Scholar 

  14. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09

    Article  PubMed  CAS  Google Scholar 

  15. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38. doi:10.1186/1471-2105-12-38

    Article  Google Scholar 

  16. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864

    Article  PubMed  CAS  Google Scholar 

  17. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  PubMed  CAS  Google Scholar 

  19. Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. doi:10.1128/aem.00683-12

    Article  PubMed  Google Scholar 

  20. Sheneman L, Evans J, Foster JA (2006) Clearcut: a fast implementation of relaxed neighbor joining. Bioinformatics 22:2823–2824. doi:10.1093/bioinformatics/btl478

    Article  PubMed  CAS  Google Scholar 

  21. Lozupone C, Knight R (2005) UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  PubMed  CAS  Google Scholar 

  22. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 2.0–0. http://CRAN.R-project.org/package=vegan. Accessed 20 Mar 2013

  23. Roberts DW (2012) labdsv: ordination and multivariate analysis for ecology. R package version 1.4–1. http://CRAN.R-project.org/package=labdsv. Accessed 20 Mar 2013

  24. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352. doi:10.1016/j.tim.2008.04.004

    Article  PubMed  CAS  Google Scholar 

  25. Tamschick S, Radek R (2012) Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. Euro J Protistol. doi:10.1016/j.ejop.2012.06.002

    Google Scholar 

  26. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599. doi:10.1128/aem.71.11.6590-6599.2005

    Article  PubMed  CAS  Google Scholar 

  27. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788. doi:10.1128/aem.00891-06

    Article  PubMed  CAS  Google Scholar 

  28. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. doi:10.1038/nature06269

    Google Scholar 

  29. Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi:10.1016/j.copbio.2010.10.009

    Article  PubMed  CAS  Google Scholar 

  30. Huang X-F, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng. doi:10.1002/bit.24833

    Google Scholar 

  31. Reichling J (2010) Plant–microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. In: Wink M (ed) Annual plant reviews volume 39: functions and biotechnology of plant secondary metabolites. Wiley, Oxford, pp 214–347. doi:10.1002/9781444318876.ch4

  32. Keller R, Wuthrich K, Debrunner P (1972) Proton magnetic resonance reveals high-spin iron (II) in ferrous cytochrome P450 cam from Pseudomonas putida. Proc Natl Acad Sci USA 69:2073–2075

    Article  PubMed  CAS  Google Scholar 

  33. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Andreas Brune (Max Planck Institute for Terrestrial Microbiology, Germany) for generously sharing a termite-specific reference database that improved sequence classification success. We are also grateful to Dr. Daniel K. Manter (USDA-ARS Soil–Plant–Nutrient Research Unit, Fort Collins, CO) and Dr. Stephen R. Decker (National Renewable Energy Laboratory, Golden, CO) for providing the plant biomasses used in this study. The research in JMV’s laboratory is supported by the National Science Foundation to JMV (grant no. MCB-0950857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Vivanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Rarefaction curves showing the detection of new microbial taxa as sampling depth increased. Top left: gut bacterial communities of termites fed corn. Top right: sorghum. Bottom left: pine. Bottom right: poplar. Saturation of sampling was generally consistent across replicates, and was highest for corn relative to the other diets (JPEG 53 kb)

High Resolution Image

(TIFF 1254 kb)

Fig. S2

Principal coordinates analysis for visualization of pairwise community similarities, using a phylogenetic measure (weighted Unifrac distance). 95 % confidence ellipses are shown around samples from each diet. The proportion of variation explained by each axis is shown on the axis labels (JPEG 39 kb)

High Resolution Image

(TIFF 1208 kb)

Fig. S3

a) Termite gut bacterial OTU richness varied significantly with diet. Observed richness was significantly lower for corn stover compared to pine (p = 0.045; ANOVA with Tukey contrasts) and poplar (p = 0.016). Estimated OTU richness (Chao estimate) was lower for termites fed corn stover than any other diet (0.0038 < p < 0.012). b) Termite gut bacterial diversity varied significantly with diet. OTU diversity (Shannon index) was lowest for corn stover (ANOVA, p = 0.036), although individual contrasts were not significant (0.054 < p < 0.074). Compared to a diet of corn stover, phylogenetic diversity was significantly higher for a diet of pine (p = 0.027) or poplar (p = 0.0097), and almost so for sorghum (p = 0.062) (JPEG 53 kb)

High Resolution Image

(TIFF 1683 kb)

ESM 4

(XLSX 11 kb)

ESM 5

(XLSX 12 kb)

ESM 6

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XF., Bakker, M.G., Judd, T.M. et al. Variations in Diversity and Richness of Gut Bacterial Communities of Termites (Reticulitermes flavipes) Fed with Grassy and Woody Plant Substrates. Microb Ecol 65, 531–536 (2013). https://doi.org/10.1007/s00248-013-0219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0219-y

Keywords

Navigation