Skip to main content

Ecology of Prokaryotic Microbes in the Guts of Wood- and Litter-Feeding Termites

  • Chapter
Termites: Evolution, Sociality, Symbioses, Ecology

Abstract

The gut of wood- and litter-feeding termites harbors a dense and diverse community of prokaryotes that contribute to the carbon, nitrogen and energy requirements of the insects. Acetogenesis from H2 plus CO2 by hindgut prokaryotes supports up to 1/3 of the respiratory requirement of some termite species; and N2-fixing and uric acid-degrading microbes can have a significant impact on termite N economy. Microelectrode studies reveal that hindguts consist of an anoxic lumen surrounded by a microoxic periphery — a finding consistent with the occurrence of both anaerobic and O2-dependent microbial metabolism in hindguts. They also suggest that the enigmatic dominance of acetogens over methanogens as an H2 “sink” reflects a spatial separation of these H2-consuming populations, with the former being closer to sources of H2 production. Isolation of a number of the prokaryotes (including spirochetes, which have proven to be H2/CO2-acetogens) reveals that termite guts are a source of novel microbial diversity. However, molecular biological analyses indicate that much of that diversity is still poorly represented in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R. I., Ludwig, W. and. Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Anldin-Mühlemann, R., et al. (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. Journal of Insect Physiology 41, 929–940.

    Google Scholar 

  3. Aragno, M. and Schlegel, H. G. (1992) The mesophilic hydrogen-oxidizing (knallgas) bacteria, In The Prokaryotes, Vol. I,2nd edn. (A. Balows et al.,Eds.), pp. 344–384, Springer-Verlag, New York.

    Google Scholar 

  4. Ball, G. H. (1969) Organisms living on and in protozoa, In Research in Protozoology, Vol. III ( T.-T. Chen, Ed.), pp. 565–718, Pergamon Press, New York.

    Google Scholar 

  5. Benemann, J. R. (1973) Nitrogen fixation in termites. Science 181, 164–165.

    CAS  PubMed  Google Scholar 

  6. Bentley, B. L. (1984) Nitrogen fixation in termites: fate of newly fixed nitrogen. Journal of Insect Physiology 30, 653–655.

    CAS  Google Scholar 

  7. Berchtold, M. and König, H. (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Systematic and Applied Microbiology 19, 66–73.

    Google Scholar 

  8. Berchtold, M., Ludwig, W. and König, H. (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiology Letters 123, 269–273.

    Google Scholar 

  9. Bermudes, D., Chase, D. and Margulis, L.. (1988) Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandinagen. nov., nom. rev.; Hollandina pterotermitidis sp. nov., nom. rev.; and Clevelandina reticulitermitidis gen. nov., sp. nov. International Journal of Systematic Bacteriology 38, 291–302.

    CAS  PubMed  Google Scholar 

  10. Bignell, D. E. (1984) Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. Journal of Insect Physiology 30, 169–174.

    Google Scholar 

  11. Bignell, D. E. and Anderson, J. M. (1980) Determination of pH and oxygen status in the guts of lower and higher termites. Journal of Insect Physiology 26, 183–188.

    CAS  Google Scholar 

  12. Bloodgood, R. A. and Fitzharris, T. P. (1976) Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach Cryptocercus. Cytobios 17, 103–122.

    CAS  Google Scholar 

  13. Bloodgood, R. L. (1975) Ultrastructure of the attachment of Pyrsonympha to the hind-gut wall of Reticulitermes tibialis. Journal of Insect Physiology 21, 391–399.

    Google Scholar 

  14. Brauman, A., et al. (1998) Analyse phylogénetique des communautés microbienne de tube digestif de termites à regimes alimentaires différenciés. In Microorganismes Aaerobies, Brauman, A., et al, Ed.), pp. 245–355, Actes du Collogue Société Francais de Microbiologie.

    Google Scholar 

  15. Brauman, A., Kane, M. D., Labat, M. and Breznak, J. A. (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257, 1384–1387.

    CAS  PubMed  Google Scholar 

  16. Breznak, J. A. (1994) Acetogenesis from carbon dioxide in termite guts, In Acetogenesis ( H. L. Drake, Ed.), pp. 303–330, Chapman and Hall, New York.

    Google Scholar 

  17. Breznak, J. A. (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota, In Invertebrate Microbial Interactions ( J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton, Eds.), pp. 173–203, Cambridge University Press, Cambridge.

    Google Scholar 

  18. Breznak, J. A. (1973) Biology of nonpathogenic, host-associated spirochetes. CRC Critical Reviews in Microbiology 2, 457–489.

    Google Scholar 

  19. Breznak, J. A. (1984) Hindgut spirochetes of termites and Cryptocercus punctulatus, In Bergey’s Manual of Systematic Bacteriology, Vol. 1. ( N. R. Krieg and J. G. Holt, Eds.), pp. 67–70, Williams and Wilkins, Baltimore.

    Google Scholar 

  20. Breznak, J. A. (1975) Symbiotic relationships between termites and their intestinal microbiota. Symposia of the Society for Experimental Biology 29, 559–580.

    PubMed  Google Scholar 

  21. Breznak, J. A. and Blum, J. S. (1991) Mixotrophy in the termite gut acetogen, Sporomusa termitida. Archives of Microbiology 156, 105–110.

    CAS  Google Scholar 

  22. Breznak, J. A., Brill W. J., Mertins, J. W. and Coppel, H. C. (1973) Nitrogen fixation in termites. Nature 244, 577–580.

    CAS  PubMed  Google Scholar 

  23. Breznak, J. A. and Brune, A. (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39, 453–487.

    CAS  Google Scholar 

  24. Breznak, J. A. and Kane, M. D. (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiology Reviews 7, 309–313.

    CAS  PubMed  Google Scholar 

  25. Breznak, J. A. and Pankratz, H. S. (1977) In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Applied and Environmental Microbiology 33, 406–426.

    CAS  Google Scholar 

  26. Breznak, J. A. and Switzer, J. M. (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Applied and Environmental Microbiology 52, 623–630.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Breznak, J. A., Switzer, J. M. and Seitz, H.-J. (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Archives of Microbiology 150, 282–288.

    CAS  Google Scholar 

  28. Brune, A. (1998) Termite guts: the world’s smallest bioreactors. Trends in Biotechnology 16, 16–21.

    CAS  Google Scholar 

  29. Brune, A., Emerson, D. and Breznak, J. A. (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61, 2681–2687.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Brune, A. and Kühl, M. (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. Journal of Insect Physiology 42, 1121–1127.

    Google Scholar 

  31. Brune, A., Miambi E. and. Breznak, J. A. (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Applied and Environmental Microbiology 61, 2688–2695.

    CAS  Google Scholar 

  32. Burris, R. H. (1991) Nitrogenases. The Journal of Biological Chemistry 266, 9339–9342.

    CAS  PubMed  Google Scholar 

  33. Chappell, D. J. and Slaytor, M. (1993) Uric acid synthesis in freshly collected and laboratory-maintained Nasutitermes walkeri Hill. Insect Biochemistry and Molecular Biology 23, 499–506.

    CAS  Google Scholar 

  34. Chung, S.-Y., et al. (1994) A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodocococcus erythropolis strain TA421, isolated from a termite ecosystem. Bioscience Biotechnology and Biochemistry 58, 2111–2113.

    Google Scholar 

  35. Cleveland, L. R, and Grimstone, A. V. (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proceedings of the Royal Society of London (serB). 159, 668–686.

    Google Scholar 

  36. Collins, M. D. and Shah, H. N. (1986) Reclassification of Bacteroides termitidis Sebald (Holdeman and Moore) in a new genus Sebaldella, as Sebaldella termitidis comb. nov. International Journal of Systematic Bacteriology 36, 349–350.

    Google Scholar 

  37. Collins, N. M. (1983) The utilization of nitrogen resources by termites (Isoptera), In Nitrogen as an Ecological Factor ( J. A. Lee, S. McNeill, and I. H. Ronson, Eds.), pp. 381–412, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  38. Conrad, R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60, 609–640.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Cord-Ruwisch, R., Seitz, H.-J. and Conrad, R. (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology 149, 350–357.

    CAS  Google Scholar 

  40. Cotta, M. A. and Russell, J. B. (1997) Digestion of nitrogen in the rumen: a model for metabolism of nitrogen compounds in gastrointestinal environments. In Gastrointestinal Microbiology Vol. 1. (R. I. Mackie and B. A. White, Eds.), pp. 380–423,. Chapman & Hall, New York.

    Google Scholar 

  41. Curtis, A. D. and Waller, D. A. (1996) The effects of decreased pO2 and increased pCO2 on nitrogen fixation rates in termites (Isoptera: Rhinotermitidae). Journal of Insect Physiology 42, 867–872.

    CAS  Google Scholar 

  42. Czolij, R., Slaytor, M. and O’Brien, R. W. (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae). Applied and Environmental Microbiology 49, 1226–1236.

    Google Scholar 

  43. Darlington, J. P. E. C., et al. (1997) Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. Journal of Tropical Ecology 13, 491–510.

    Google Scholar 

  44. Doddema, H. J. and Vogels, G. D. (1978). Improved identification of methanogenic bacteria by fluorescence microscopy. Applied and Environmental Microbiology 36, 752–754.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ebert, A., and Brune, A. (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology 63, 4039–4046.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ellis, J. E., et al. (1991) Influence of CO2 and low concentrations of 02 on fermentative metabolism of the ruminai ciliate Polyplastron multivesiculatum. Applied and Environmental Microbiology 57, 1400–1407.

    CAS  Google Scholar 

  47. Eutick, M. L., O’Brien, R.W. and Slaytor, M. (1978) Bacteria from the gut of Australian termites. Applied and Environmental Microbiology 35, 823–828.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Eutick, M. L., Veivers, P., O’Brien, R. W. and Slaytor, M. (1978) Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of Insect Physiology 24, 363–368.

    CAS  Google Scholar 

  49. Fenchel, T. and Finlay, B. J. (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford, U.K.

    Google Scholar 

  50. French, J. R. J., Rasmussen, R A., Ewart, D. M. and Khalil, M. A. K. (1997) The gaseous environment of mound colonies of the subterranean termite Coptotermes lacteus (Isoptera: Rhinotermitidae) before and after feeding on mirex-treated decayed wood blocks. Bulletin of Entomological Research 87, 145–149.

    Google Scholar 

  51. French, J. R. J., Turner, G. L. and Bradbury, J. F. (1976) Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology 95, 202–206.

    CAS  Google Scholar 

  52. Grech-Mora, I., et al. (1996) Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. International Journal of Systematic Bacteriology 46, 512–518.

    Google Scholar 

  53. Hall, D. W. and Hostettler, N. (1993) Septate gregarines from Reticulitermes flavipes and Reticulitermes virginicus (Isoptera: Rhinotermitidae). Journal of Eukaryotic Microbiology 40, 29–33.

    Google Scholar 

  54. Hausmann, K., Radek, R. and Gradius, M. (1995) Joenia paradoxa n. sp. (heteroflagellata, nov. subphyl.), a protozoan metakaryote with extraordinary axonemal and kinetosomal features. Naturwissenschaften 82, 188–189.

    CAS  Google Scholar 

  55. Hewitt, P. H., van der Westhuizen, M. C., van der Linde, T. C. D. K. and Adam, R. A. (1987) Acetylene reduction by the harvester termite Hodotermes mossambicus (Hagen). Journal of Entomological Society of South Africa 50, 513–520.

    Google Scholar 

  56. Higashi, M., Abe, T. and Burns, T. P. (1992) Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society of London (Ser. B) 249, 303–308.

    Google Scholar 

  57. Hill, S. (1988) How is nitrogenase regulated by oxygen? FEMS Microbiology Reviews 54, 111–130.

    CAS  Google Scholar 

  58. Hungate, R. E. (1941) Experiments on the nitrogen economy of termites. Annals of the Entomological Society of America 34, 467–489.

    CAS  Google Scholar 

  59. Hungate, R. E. (1939) Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20, 230–245.

    CAS  Google Scholar 

  60. Hungate, R. E. (1943) Quantitative analyses on the cellulose fermentation by termite protozoa. Annals of the Entomological Society of America 36, 730–739.

    CAS  Google Scholar 

  61. Hungate, R. E. (1946) The symbiotic utilization of cellulose. Journal of the Elisha Mitchell Scientific Society 62, 9–24.

    CAS  PubMed  Google Scholar 

  62. Kane, M. D., Brauman, A. and Breznak, J. A. (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite Cubitermes speciosus. Archives of Microbiology 156, 99–104.

    CAS  Google Scholar 

  63. Kane, M. D. and Breznak, J. A. (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Archives ofMicrobiology 156, 91–98.

    CAS  Google Scholar 

  64. Kirby, H. J. (1941) Organisms living on and in protozoa. In Protozoa in Biological Research ( G. N. Calkins and F. M. Summers, Eds.), pp. 1009–1113, Columbia University Press, New York.

    Google Scholar 

  65. Kosono, S. M., et al. (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Applied and Environmental Microbiology 63, 3282–3285.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Krasil’nikov, N. A. and Satdykov, S. I. (1969) Estimation of the total bacteria in the intestines of termites. Mikrobiologiya 38, 346–350.

    Google Scholar 

  67. Krishna, K. and Weesner, F. M. (Eds.) (1969) Biology of Termites, Vol. 1. Academic Press, New York.

    Google Scholar 

  68. Krishna, K. and Weesner, F. M. (Eds.) (1970) Biology of Termites, Vol. 2. Academic Press, New York.

    Google Scholar 

  69. Kuhnigk, T., et al. (1995) Bacillus oleronius sp.nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Canadian Journal ofMicrobiology 41, 699–706.

    CAS  Google Scholar 

  70. Kuhnigk, T., et al. (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Systematic and Applied Microbiology 17, 76–85.

    CAS  Google Scholar 

  71. Kuhnigk, T., et al. (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology 19, 139–149.

    CAS  Google Scholar 

  72. Leach, J. G. and Granovsky, A. A. (1938) Nitrogen in the nutrition of termites. Science 87, 66–67.

    CAS  PubMed  Google Scholar 

  73. Leadbetter, J. R. and Breznak, J. A. (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology 62, 3620–3631.

    CAS  Google Scholar 

  74. Leadbetter, J. R., Crosby, L. D. and Breznak, J. A. (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Archives ofMicrobiology 169, 287–92.

    CAS  Google Scholar 

  75. Leadbetter, J. R., Schmidt, T. M., Graber, J. R. and Breznak, J. A. (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283, 686–689.

    CAS  PubMed  Google Scholar 

  76. Lee, M. J., Schreurs, P. J., Messer, A. C. and. Zinder, S. H. (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Current Microbiology 15, 337–341.

    Google Scholar 

  77. Leidy, J. (1877) On the intestinal parasites of Termes flavipes. Proceedings of the Academy of Natural Sciences of Philadelphia 29, 146–149.

    Google Scholar 

  78. Leidy, J. (1874–1881) The parasites of the termites. Journal of the Academy of Natural Sciences of Philadelphia 8, 425–447.

    Google Scholar 

  79. Lilbum, T. G., Schmidt, T. M. and Breznak, J. A. (1999) Phylogenetic diversity of termite gut spirochetes. Environmental Microbiology 1, 331–345.

    Google Scholar 

  80. Lin, C. and Miller, T. L. (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Archives ofMicrobiology 169, 397–403.

    CAS  Google Scholar 

  81. Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63, 4516–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Lovelock, M., O’Brien, R. W. and Slaytor, M. (1985) Effect of laboratory containment on the nitrogen metabolism of termites. Insect Biochemistry 15, 503–509.

    CAS  Google Scholar 

  83. Lovley, D. R. and Goodwin, S. (1988) Hydrogen concentrations as an indicator of the terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta 52, 2993–3003.

    CAS  Google Scholar 

  84. Maeda, M., Chung, S. Y., Song, E., and Kudo, T. (1995) Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Applied and Environmental Microbiology 61, 549–555.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Margulis, L. and Hinkle, G. (1992) Large symbiotic spirochetes: Clevelandina, Hollandina, and Pillotina, In The Prokaryotes, 2nd edn, Vol. 4 (B. A., H. G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer, Eds.), pp. 3965–3978, Springer-Verlag, New York.

    Google Scholar 

  86. Mauldin, J. K., Rich, N. M. and Cook, D. W. (1978) Amino acid synthesis from 14C-acetate by normally and abnormally faunated termites, Coptotermes formosanus. Insect Biochemistry 8, 105–109.

    CAS  Google Scholar 

  87. Messer, A. C. and Lee, M. J. (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microbial Ecology 18, 275–284.

    CAS  Google Scholar 

  88. Nazarczuk, R. A., O’Brien, R. W. and Slaytor, M. (1981) Alteration of the gut microbiota and its effect on nitrogen metabolism in termites. Insect Biochemistry 11, 267–275.

    CAS  Google Scholar 

  89. Odelson, D. A. and. Breznak, J A. (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Applied and Environmental Microbiology 49, 614–621.

    CAS  Google Scholar 

  90. Odelson, D. A. and Breznak, J. A. (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Applied and Environmental Microbiology 45, 1602–1613.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Ohkuma, M. and Kudo, T. (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiology Letters 164, 389–395.

    CAS  Google Scholar 

  92. Ohkuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 461–468.

    CAS  Google Scholar 

  93. Ohkuma, M., Noda, S., Horikoshi, K. and Kudo, T. (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Letters 134, 45–50.

    CAS  Google Scholar 

  94. Ohkuma, M., et al. (1996) Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 2747–2752.

    CAS  Google Scholar 

  95. Paster, B. J., et al. (1996) Phylogeny of not-yetcultured spirochetes from termite guts. Applied and Environmental Microbiology 62, 347–352.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Peakin, G. J. and Josens, G. (1978) Respiration and energy flow. In Production Ecology of Ants and Termites. ( M. V. Brian, Ed.), pp. 111–163, Cambridge University Press, Cambridge.

    Google Scholar 

  97. Potrikus, C. J. and Breznak, J. A. (1980) Anaerobic degradation of uric acid by gut bacteria of termites. Applied and Environmental Microbiology 40, 125–132.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Potrikus, C. J. and Breznak, J. A. (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proceedings of the National Academy of Sciences USA. 78, 4601–4605.

    CAS  Google Scholar 

  99. Potrikus, C. J. and Breznak, J. A. (1977) Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Applied and Environmental Microbiology 33, 392–399.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Potrikus, C. J. and Breznak, J. A. (1980) Uric acid in wood-eating termites. Insect Biochemistry 10, 19–27.

    CAS  Google Scholar 

  101. Potrikus, C. J. and Breznak, J. A. (1980) Uric acid-degrading bacteria in guts of termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 40, 117–124.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Prestwich, G. D. and Bentley, B. L. (1982) Ethylene production by the fungus comb of macrotermitines (Isoptera, Termitidae): a caveat for the use of the acetylene reduction assay for nitrogenase activity. Sociobiology 7, 145–152.

    Google Scholar 

  103. Prestwich, G. D. and Bentley, B. L. (1981) Nitrogen fixation by intact colonies of the termite Nasutitermes corniger. Oecologia 49, 249–251.

    Google Scholar 

  104. Prestwich, G. D., Bentley, B. L. and Carpenter, E. J. (1980) Nitrogen sources for neotropical nasute termites: fixation and selective foraging. Oecologia 46, 397–401.

    Google Scholar 

  105. Radek, R. (1994) Monocercomonoides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Archiv fur Protistenkunde 144, 373–382.

    Google Scholar 

  106. Radek, R. (1997) Spirotrichonympha minor n. sp., a new hypermastigote termite flagellate. European Journal of Protistology 33, 360–374.

    Google Scholar 

  107. Radek, R., and Hausmann, K. (1994) Placojoenia sinaica n. g., n. sp., a symbiotic flagellate from the termite Kalotermes sinaicus. European Journal of Protistology 30, 25–37.

    Google Scholar 

  108. Radek, R, Hausmann, K. and Breunig, A. (1992) Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozoologica 31, 93–107.

    Google Scholar 

  109. Radek, R., Rösel, J. and Hausmann, K. (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193, 105–122.

    Google Scholar 

  110. Reinhold-Hurek, B. and Zhulin, I. B. (1997) Terminal oxidases of Azoarcus sp. BH72, a strictly respiratory diazotroph. FEBS Letters 404, 143–147.

    CAS  PubMed  Google Scholar 

  111. Rohrmann, G. F. and Rossman, A. Y. (1980) Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 20, 61–73.

    CAS  Google Scholar 

  112. Rösel, J., Radek, R. and Hausmann, K. (1996) Ultrastructure of the trichomonad flagellate Stephanonympha nelumbium. The Journal of Eukaryotic Microbiology 43, 505–511.

    Google Scholar 

  113. Schaefer, D. A. and Whitford, W. G. (1981) Nutrient cycling by the subterranean termite Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia 48, 277–283.

    Google Scholar 

  114. Schäfer, A., et al. (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. Journal of Applied Bacteriology 80, 471–478.

    PubMed  Google Scholar 

  115. Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61, 262–280.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Schultz, J. E. and Breznak, J. A. (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35, 930–936.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Slaytor, M. and Chappell, D. J. (1994) Nitrogen metabolism in termites. Comparative Biochemistry and Physiology 107B, 1–10.

    Google Scholar 

  118. Smolenski, W. J. and Robinson, J. A. (1988) In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiology Ecology 53, 95–100.

    CAS  Google Scholar 

  119. Speck, U., Becker, G. and Lenz, M. (1971) Ernahrungsphysiologische Untersuchungen an Termiten nach selektiver medikamentöser Ausschaltung der Darmsymbionten. Zeitschrift fur Angewande Zoologie 58, 475–491.

    Google Scholar 

  120. Staley, J. T. and Konopka, A. (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology 39, 321–346.

    CAS  PubMed  Google Scholar 

  121. Sugimoto, A., et al. (1998) Methane and hydrogen production in a termite-symbiont system. Ecological Research 13, 241–257.

    CAS  Google Scholar 

  122. Sylvester-Bradley, R., Bandeira, A. G. and de Oliveira, L. A. (1978) Fixacao de nitrogênio (reducao de acetileno) em cupins (Insecta: Isoptera) da Amazônia Central. Acta Amazonica 8, 621–627.

    CAS  Google Scholar 

  123. Tamm, S. L. (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. Journal of Cell Biology 94, 697–709.

    CAS  PubMed  Google Scholar 

  124. Tamm, S L (1980) The ultrastructure of prokaryoticeukaryotic cell junctions. Journal of Cell Science 44, 335–352.

    CAS  PubMed  Google Scholar 

  125. Tayasu, I., Abe, T., Eggleton, P. and Bignell, D. E. (1997) Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology 22, 343–351.

    Google Scholar 

  126. Tayasu, I., Sugimoto, A., Wada, E. and Abe, T. (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81, 229–231.

    Google Scholar 

  127. Tholen, A., Schink, B. and Brune, A. (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiology Ecology 24, 137–149.

    CAS  Google Scholar 

  128. To, L., Margulis, L. and Cheung, A. T. (1978) Pillotinas and hollandinas: distribution and behaviour of large spirochaetes symbiotic in termites. Micro/nos 22, 103–133.

    CAS  Google Scholar 

  129. To, L. P., Margulis, L., Chase, D. and Nutting, W. L. (1980) The symbiotic microbial community of the Sonoran Desert termite: Pterotermes occidentis. Biosystems 13, 109–137.

    CAS  Google Scholar 

  130. Trinkerl, M., Breunig, A., Schauder, R. and König, H. (1990) Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Systematic and Applied Microbiology 13, 372–377.

    CAS  Google Scholar 

  131. Tsunoda, K., Ohmura, W. and Yoshimura, T. (1993) Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) (II) Presence of methanogenic bacteria and effect of food on methane emission rates. Japanese Journal of Environmental Entomology and Zoology 5, 166–174.

    Google Scholar 

  132. Veivers, P. C., O’Brien, R. W. and Slaytor, M. (1980) The redox state of the gut of termites. Journal of Insect Physiology 26, 75–77.

    Google Scholar 

  133. Veivers, P. C., O’Brien, R. W. and Slaytor, M. (1982) Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing the entry of foreign bacteria. Journal of Insect Physiology 28, 947–951.

    Google Scholar 

  134. Waller, D. A., Breitenbeck, G. A. and La Fage, J. P. (1989) Variation in acetylene reduction by Coptotermes formosanus (Isoptera: Rhinotermitidae) related to colony source and termite size. Sociobiology 16, 191–196.

    Google Scholar 

  135. Wheeler, G. S., Tokoro, M., Scheffrahn, R. H. and Su, N.-Y. (1996) Comparative respiration and methane production rates in Nearctic termites. Journal of Insect Physiology 42, 799–806.

    CAS  Google Scholar 

  136. Williams, C. M., Veivers, P. C., Slaytor, M., and Cleland, S. V. (1994) Atmospheric carbon dioxide and acetogenesis in the termite Nasutitermes walkeri (Hill). Comparative Biochemistry and Physiology 107A, 113–118.

    Google Scholar 

  137. Yamin, M. A. (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. Journal of Protozoology 25, 535–538.

    Google Scholar 

  138. Yamin, M. A. (1980) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211, 58–59.

    Google Scholar 

  139. Yamin, M. A. (1980) Cellulose metabolism by the termite flagellate, Trichomitopsis termopsidis. Applied and Environmental Microbiology 39, 859–863.

    CAS  Google Scholar 

  140. Yara, K., Jahana, K. and Hayashi, H. (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae Macrotermitinae). Sociobiology 15, 247–260.

    Google Scholar 

  141. Zehr, J. P., and Capone, D. G. (1996) Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microbial Ecology 32, 263–281.

    CAS  PubMed  Google Scholar 

  142. Zinder, S. H. (1993) Physiological ecology of methanogens, In Methanogenesis ( J. G. Ferry, Ed.), pp. 128–206, Chapman & Hall, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Breznak, J.A. (2000). Ecology of Prokaryotic Microbes in the Guts of Wood- and Litter-Feeding Termites. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics