Skip to main content

Treatment of Urolithiasis

  • Chapter
  • First Online:
Urolithiasis in Clinical Practice

Part of the book series: In Clinical Practice ((ICP))

Abstract

This section will be approached systematically starting with the management of incidentally discovered urinary stones, then the treatment of a painful episode of urinary stones presenting in the emergency department as well as the management of obstructed kidneys with sepsis. Thereafter we will discuss the various active modalities performed when symptoms persist, or when at first glance the stone appears not to be prone for spontaneous passage. Active stone removal is also recommended when there is stone growth, de novo obstruction, or associated infection [1]. We will also develop the topic of dietary and medical preventive measures and will give a brief account on phytotherapy.

“Challenges in medicine are moving from ‘Treat the symptoms after the house is on fire’ to ‘Can we preserve the house intact?’”

Elizabeth Blackburn (1948–) (Nobel Prize in Physiology/Medicine in 2009)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Piezoelectricity is an adjective coming from Greek words “piezein” (to press or to squeeze) and “electron” (amber: a shining fossilized tree resin). The principle of Piezoelectricity can be summarized as “production of electricity by pressure application”. Indeed when submitted to high pressure, various solid materials such as quartz, ceramics, crystals, etc. accumulate a potential energy that is instantly delivered as an alternating electric current. Piezoelectricity was reportedly discovered by the French Physicists Jacques and Pierre Curie in 1880 and its simplest example nowadays is a gas lighter. “Reverse or inverse piezoelectricity” is the faculty of the same solid materials to become mechanically stressed, i.e. deformed in shape when submitted to electricity.

  2. 2.

    The word “Steinstrasse” is a German term which means “stone street”, and its plural is “steinstrassen ”. It was coined by Chaussy C et al. [19] to refer to a post-ESWL adverse event where multiple stone fragments get jammed in the ureter eventually causing an obstruction. In a large Egyptian series of patients treated with ESWL (n = 2954), steinstrassen were observed in 4.9% of cases [38]. They mostly form in the pelvic or lower ureter (74%), then in the lumbar or upper ureter (18.5–21.7%), and rarely in the iliac or mid ureter (4.3–7.4%). Suggested risk factors for their formation are: renal stone size >2 cm, renal pelvis or upper calyceal location, a dilated system, and use of high power (>22 Kv) for disintegration [39, 40]. In the pediatric population, it is also associated with age <4 years. Some authors have proposed to classify steinstrassen into three types: type I is made up of tiny particles (≤2 mm), type II has a large leading fragment of 4–5 mm with a tail made of tiny particles, and type III is composed of large fragments [41]. Asymptomatic steinstrassen are managed conservatively, and Tamsulosin has been suggested [42]. Complicated steinstrassen (i.e associated with pain, hydronephrosis, fever) may require percutaneous nephrostomy , or ureteroscopy , or both [41, 43].

    Steinstrassen can rarely form spontaneously in patient with nephrocalcinosis associated with distal RTA [44, 45] and have also been reported even in the urethra after ESWL for a renal stone, after cystolitholapaxy in a post-renal transplant patient, in association with stricture, or de-novo in children [46,47,48,49] (Fig. 11.5).

  3. 3.
    • The Guy’s classification helps to predict the outcome of PCNL. It comprises of four grades [129]:

      • grade I: solitary stone in mid/lower pole or solitary stone in the pelvis with simple anatomy

      • grade II: solitary stone in upper pole or multiple stones in a patient with simple anatomy or a solitary stone in a patient with abnormal anatomy

      • grade III: multiple stones in a patient with abnormal anatomy or stones in a caliceal diverticulum or partial staghorn calculus

      • grade IV: staghorn calculus or any stone in a patient with spina bifida or spinal injury.

    • Other stone scoring systems include the Clinical Research Office of the Endourological Society (CROES) nomogram, the S.T.O.N.E. (stone size, tract length, obstruction, number of involved calices, and essence/stone density) nephrolithometry, and the Seoul National University Renal Stone Complexity (S-ReSC) score [130].

  4. 4.

    The Spanish Professor Josep María Gil-Verne t Vila is credited with many other original urological contributions, such as a technique for renal homotransplantations [198], hypospadias correction [199], vesico-ureteral reflux correction [200], pelvic floor repair [201], complex vesico-vaginal fistula repair [202], orthotopic renal transplantation [203], etc. He is the son of the late Professor Salvador Gil-Vernet who proposed a model for the description of the prostate anatomy in 1953 [204].

  5. 5.

    Anatrophic is an adjective related to what is used in order to prevent or correct atrophy of cells, tissues, or organs. However this adjective has become almost obsolete nowadays, being merely used in the context of nephrolithotomy .

  6. 6.

    The eponym Brödel’s line is used in the USA and the UK, being given after the Germano-American medical Illustrator Max Brödel, “the man who put art into medicine” [205]. Brödel depicted this line in 1901 (Fig. 11.20a, b) [206]. However in Continental Europe and Latin America, preference is sometimes made for the eponym Hyrtl’s line, given after the Austrian anatomist Josef Hyrtl who described this line in 1882, almost 20 years earlier than Brödel [207]. Hyrtl was the first to suggest the “natürliche Teilbarkeit der Niere” (natural divisibility of the kidney) through this avascular line and Brödel credited him for this fact [206].

    Figure 11.20
    figure 20

    (a) Lateral view of left kidney, showing the location of the most advantageous incision through the parenchyma in kidneys which have a normal arterial arrangement. aa´: Lateral convex border of kidney. bb´: Position of lateral column of cortical substance containing the vessels. cc´: Best incision. (b) de: Incorrect direction of incision. cx: Correct direction of incision. From Max Brödel [206]. Original illustration 1901 Brödel Publication, reproduced with permission from the Collection of the Max Brödel Archives, in the Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

  7. 7.

    The percutaneous cystolithomy has been mentioned above (see section number 11.3.6).

  8. 8.

    CLU (Club della litiasi Urinaria) is the Italian expert committee for urinary lithiasis.

  9. 9.

    Citrus fruits: lemon, orange, mandarin, clementine, grapefruit, lime, sudachi, calamondin, etc.

  10. 10.

    Non-citrus fruits: melon, grapes, apricots, pears, peaches, blackberries, raspberries, plums, etc.

  11. 11.

    Febuxostat is FDA-approved since 2009.

  12. 12.

    The chelating action of Penicillamine has been used for many other medical indications: Wilson’s disease (where it binds with copper and allows its elimination with urine), arsenic poisoning etc. Penicillamine has also been used as a disease-modifying agent in scleroderma and rheumatoid arthritis. However in all these indications its use was progressively confined to exceptional cases or banned because of the potentially dangerous side effects.

References

  1. Türk C, Petřík A, Sarica K, et al. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol. 2016;69(3):468–74.

    Article  PubMed  Google Scholar 

  2. Dropkin BM, Moses RA, Sharma D, Pais VM Jr. The natural history of nonobstructing asymptomatic renal stones managed with active surveillance. J Urol. 2015;193(4):1265–9.

    Article  PubMed  Google Scholar 

  3. Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. J Urol. 2016;196(4):1153–60.

    Article  PubMed  Google Scholar 

  4. Afshar K, Jafari S, Marks AJ, et al. Nonsteroidal anti-inflammatory drugs (NSAIDs) and non-opioids for acute renal colic. Cochrane Database Syst Rev. 2015;(6). Art. No.: CD006027. doi:10.1002/14651858.CD006027.pub2.

    Google Scholar 

  5. Preminger GM, Tiselius HG, Assimos DG, et al. 2007 Guideline for the management of ureteral calculi. Eur Urol. 2007;52:1610–31. [PMID: 18074433].

    Article  PubMed  Google Scholar 

  6. Furyk JS, Chu K, Banks C, et al. Distal ureteric stones and tamsulosin: a double-blind, placebo-controlled, randomized, multicenter trial. Ann Emerg Med. 2016;67(1):86–95.e2.

    Article  PubMed  Google Scholar 

  7. Davenport K, Timoney AG, Keeley FX. A comparative in vitro study to determine the beneficial effect of calcium-channel and alpha(1)-adrenoceptor antagonism on human ureteric activity. BJU Int. 2006;98:651–5.

    Article  CAS  PubMed  Google Scholar 

  8. Liu C, Zeng G, Kang R, et al. Efficacy and safety of alfuzosin as medical expulsive therapy for ureteral stones: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0134589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Berger DA, Ross MA, Hollander JB, Ziadeh J, Chen C, Jackson RE, Swor RA. Tamsulosin does not increase 1-week passage rate of ureteral stones in ED patients. Am J Emerg Med. 2015;33(12):1721–4.

    Article  PubMed  Google Scholar 

  10. Pickard R, Starr K, MacLennan G, et al. Use of drug therapy in the management of symptomatic ureteric stones in hospitalised adults: a multicentre, placebo-controlled, randomised controlled trial and cost-effectiveness analysis of a calcium channel blocker (nifedipine) and an alpha-blocker (tamsulosin) (the SUSPEND trial). Health Technol Assess. 2015;19(63):vii–viii, 1–171.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hollingsworth JM, Canales BK, Rogers MA, et al. Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ. 2016;355:i6112. doi:10.1136/bmj.i6112.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang D, Wu J, Yuan H, Cui Y. The efficacy and safety of silodosin for the treatment of ureteral stones: a systematic review and meta-analysis. BMC Urol. 2016;16(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yuvanc E, Yilmaz E, Tuglu D, Batislam E. Medical and alternative therapies in urinary tract stone disease. World J Nephrol. 2015;4(5):492–9.

    PubMed  PubMed Central  Google Scholar 

  14. Ramsey S, Robertson A, Ablett MJ, et al. Evidence-based drainage of infected hydronephrosis secondary to ureteric calculi. J Endourol. 2010;24(2):185–9.

    Article  PubMed  Google Scholar 

  15. Türk C, Petřík A, Sarica K, et al. EAU guidelines on interventional treatment for urolithiasis. Eur Urol. 2016;69(3):475–82. doi:10.1016/j.eururo.2015.07.041. Epub 2015 Sep 4.

    Article  PubMed  Google Scholar 

  16. Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American Urological Association/Endourological Society Guideline, PART II. J Urol. 2016;196(4):1161–9.

    Article  PubMed  Google Scholar 

  17. Doizi S, Raynal G, Traxer O. Evolution of urolithiasis treatment over 30 years in a French academic institution. Prog Urol. 2015;25(9):543–8.

    Article  CAS  PubMed  Google Scholar 

  18. Heers H, Turney BW. Trends in urological stone disease: a 5-year update of Hospital Episode statistics. BJU Int. 2016;118(5):785–9. doi:10.1111/bju.13520.

    Article  PubMed  Google Scholar 

  19. Chaussy C, Schmiedt E, Jocham D, et al. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol. 1982;127:417–20.

    Article  CAS  PubMed  Google Scholar 

  20. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2:1265–8.

    Article  CAS  PubMed  Google Scholar 

  21. Gschwend JE, Paiss T, Gottfried HW, Hautmann RE. Extracorporeal shockwave lithotripsy in children. Complications and long-term results. Urologe A. 1995;34(4):324–8.

    CAS  PubMed  Google Scholar 

  22. Zogović J. Extracorporeal shock wave lithotripsy in the urinary tract in patients with one kidney. Srp Arh Celok Lek. 2002;130(9–10):312–5.

    Article  PubMed  Google Scholar 

  23. Tailly G, Chaussy CG, Bohris C, et al. ESWL in a nutshell. 4th ed. Munich: Dornier MedTech Europe GmbH; 2014.

    Google Scholar 

  24. Pemberton J. Extra-corporeal shock wave lithotripsy. Postgrad Med J. 1987;63:1025–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rassweiler JJ, Knoll T, Köhrmann KU, et al. Shock wave technology and application: an update. Eur Urol. 2011;59(5):784–96.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sass W, Braunlich M, Dreyer H, Matura E. The mechanisms of stone disintegration by shock waves. Ultrasound Med Biol. 1991;17(3):239–43.

    Article  CAS  PubMed  Google Scholar 

  27. Duryea AP, Roberts WW, Cain CA, Hall TL. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(2):301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol. 2008;179:194–7.

    Article  PubMed  Google Scholar 

  29. Grasso M, Loisides P, Beaghler M, Bagley D. The case for primary endoscopic management of upper urinary tract calculi: I. A critical review of 121 extracorporeal shock-wave lithotripsy failures. Urology. 1995;45(3):363–71.

    Article  CAS  PubMed  Google Scholar 

  30. Mishra SK, Ganpule A, Manohar T, Desai MR. Surgical management of pediatric urolithiasis. Indian J Urol. 2007;23(4):428–34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Telha KA, Alkohlany K, Alnono I. Extracorporeal shockwave lithotripsy monotherapy for treating patients with bladder stones. Arab J Urol. 2016;14(3):207–10.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Streem SB. Contemporary clinical practice of shock wave lithotripsy: a reevaluation of contraindications. J Urol. 1997;157(4):1197–203.

    Article  CAS  PubMed  Google Scholar 

  33. Lechevallier E, Traxer O, Saussine C. Extracorporeal shockwave lithotripsy for upper urinary tract stone. Prog Urol. 2008;18(12):878–85.

    Article  CAS  PubMed  Google Scholar 

  34. Vasavada SP, Streem SB, Kottke-Marchant K, Novick AC. Pathological effects of extracorporeally generated shock waves on calcified aortic aneurysm tissue. J Urol. 1994;152(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  35. Atlee JL, Bernstein AD. Cardiac rhythm management devices (part II): perioperative management. Anesthesiology. 2001;95(6):1492–506.

    Article  CAS  PubMed  Google Scholar 

  36. Ector H, Janssens L, Baert L, De Geest H. Extracorporeal shock wave lithotripsy and cardiac arrhythmias. Pacing Clin Electrophysiol. 1989;12(12):1910–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tonolini M, Villa F, Ippolito S, et al. Cross-sectional imaging of iatrogenic complications after extracorporeal and endourological treatment of urolithiasis. Insights Imaging. 2014;5(6):677–89.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abdel-Khalek M, Sheir KZ, Mokhtar AA, et al. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model. Scand J Urol Nephrol. 2004;38(2):161–7.

    Article  PubMed  Google Scholar 

  39. Madbouly K, Sheir KZ, Elsobky E, et al. Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol. 2002;167(3):1239–42.

    Article  PubMed  Google Scholar 

  40. El-Assmy A, El-Nahas AR, Elsaadany MM, et al. Risk factors for formation of steinstrasse after extracorporeal shock wave lithotripsy for pediatric renal calculi: a multivariate analysis model. Int Urol Nephrol. 2015;47(4):573–7.

    Article  PubMed  Google Scholar 

  41. Coptcoat MJ, Webb DR, Kellet MJ, et al. The steinstrasse: a legacy of extracorporeal lithotripsy? Eur Urol. 1988;14(2):93–5.

    CAS  PubMed  Google Scholar 

  42. Resim S, Ekerbicer HC, Ciftci A. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology. 2005;66(5):945–8.

    Article  PubMed  Google Scholar 

  43. Puppo P. Steinstrasse 20 years later: still a problem after ESWL? Eur Urol. 2006;50(4):643–7.

    Article  PubMed  Google Scholar 

  44. Van Savage JG, Fried FA. Bilateral spontaneous steinstrasse and nephrocalcinosis associated with distal renal tubular acidosis. J Urol. 1993;150(2 Pt 1):467–8.

    Article  PubMed  Google Scholar 

  45. Kok HK, Donnellan JP, Torreggiani WC. Spontaneous steinstrasse from multiple ureteric calculi. Br J Hosp Med (Lond). 2012;73(8):474.

    Article  Google Scholar 

  46. Biyani CS, Bhatia V, Baliga D. Urethral steinstrasse—clinical experience and radiographic findings. Clin Radiol. 1993;48(4):273–4.

    Article  CAS  PubMed  Google Scholar 

  47. Brahmbhatt YG, Schulsinger DA, Wadhwa NK. Urethral steinstrasse in renal transplantation. Kidney Int. 2009;75(3):344.

    Article  PubMed  Google Scholar 

  48. Kumar S, Sharma S, Ganesamoni R, Singh SK. Urethral steinstrasse with urethrocutaneous fistula. Urology. 2012;79(2):e1–2.

    Article  PubMed  Google Scholar 

  49. Vaddi SP, Devraj R, Reddy V, et al. Urethral steinstrasse causing acute urinary retention. Urology. 2011;77(3):594–5.

    Article  PubMed  Google Scholar 

  50. Kaynar M, Tekinarslan E, Keskin S, et al. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy. Cent European J Urol. 2015;68(3):348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wrixon AD. New ICRP recommendations. J Radiol Prot. 2008;28(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ackermann D, Merz V, Marth D, Zehntner C. Clinical experiences with extracorporeal shockwave lithotripsy. Schweiz Med Wochenschr. 1989;119(26):935–40.

    CAS  PubMed  Google Scholar 

  53. Ghoneim IA, El-Ghoneimy MN, El-Naggar AE, et al. Extracorporeal shock wave lithotripsy in impacted upper ureteral stones: a prospective randomized comparison between stented and non-stented techniques. Urology. 2010;75(1):45–50.

    Article  PubMed  Google Scholar 

  54. Matsuoka Y, Ishizaka K, Machida T, et al. Treatment of 2019 cases with upper urinary tract calculi using a piezoelectric lithotriptor ESL-500A. Nihon Hinyokika Gakkai Zasshi. 2002;93(3):476–82.

    PubMed  Google Scholar 

  55. Bon D, Doré B, Irani J, et al. Results of extracorporeal lithotripsy with ultrasonography-guided hydroelectric lithotriptor: study on 546 patients, prognosis factors. Prog Urol. 1995;5(5):671–8.

    CAS  PubMed  Google Scholar 

  56. Park BH, Choi H, Kim JB, Chang YS. Analyzing the effect of distance from skin to stone by computed tomography scan on the extracorporeal shock wave lithotripsy stone-free rate of renal stones. Korean J Urol. 2012;53:40–3.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Müllhaupt G, Engeler DS, Schmid HP, Abt D. How do stone attenuation and skin-to-stone distance in computed tomography influence the performance of shock wave lithotripsy in ureteral stone disease? BMC Urol. 2015;15:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yazici O, Tuncer M, Sahin C, et al. Shock wave lithotripsy in ureteral stones: evaluation of patient and stone related predictive factors. Int Braz J Urol. 2015;41(4):676–82.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pareek G, Armenakas NA, Panagopoulos G, et al. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology. 2005;65(1):33–6.

    Article  PubMed  Google Scholar 

  60. Ouzaid I, Al-qahtani S, Dominique S, et al. A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int. 2012;110:E438–42.

    Article  PubMed  Google Scholar 

  61. Bon D, Doré B, Irani J, et al. Radiographic prognostic criteria for extracorporeal shock-wave lithotripsy: a study of 485 patients. Urology. 1996;48:556–60. Discussion 560–1.

    Article  CAS  PubMed  Google Scholar 

  62. Bastian PJ, Bastian HP. Outpatient extracorporeal shock wave lithotripsy. Prospective evaluation of 2937 cases. Urologe A. 2004;43(7):829–35.

    Article  CAS  PubMed  Google Scholar 

  63. Kaczmarek K, Gołąb A, Słojewski M. Impact of ureteric stent on outcome of extracorporeal shockwave lithotripsy: a propensity score analysis. Cent European J Urol. 2016;69(2):184–9.

    PubMed  PubMed Central  Google Scholar 

  64. Argyropoulos AN, Tolley DA. Ureteric stents compromise stone clearance after shockwave lithotripsy for ureteric stones: results of a matched-pair analysis. BJU Int. 2009;103(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  65. Sfoungaristos S, Gofrit ON, Pode D, et al. History of ureteral stenting negatively affects the outcomes of extracorporeal shockwave lithotripsy. Results of a matched-pair analysis. Prague Med Rep. 2015;116(3):225–32.

    Article  PubMed  Google Scholar 

  66. Singh V, Gupta A. Stenturia: a rare complication of indwelling ureteral stent. Urol J. 2009;6(3):226–7.

    PubMed  Google Scholar 

  67. Heimbach D, Bäumler D, Schoeneich G, Hesse A. Percutaneous chemolysis: an important tool in the treatment of urolithiasis. Int Urol Nephrol. 1998;30(6):655–64.

    Article  CAS  PubMed  Google Scholar 

  68. Pfister RC, Dretler SP. Percutaneous chemolysis of renal calculi. Urol Radiol. 1984;6(2):138–43.

    Article  CAS  PubMed  Google Scholar 

  69. Kachrilas S, Papatsoris A, Bach C, et al. The current role of percutaneous chemolysis in the management of urolithiasis: review and results. Urolithiasis. 2013;41(4):323–6.

    Article  PubMed  Google Scholar 

  70. Zhang J, Wang S, Hong J, et al. New potential solutions for the chemolysis of urinary phosphate calculi determined by an in vitro study. Urolithiasis. 2015;43(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  71. Young HH, McKay RW. Congenital valvular obstruction of the prostatic urethra. Surg Gynecol Obstet. 1929;48:509–12.

    Google Scholar 

  72. Rizkala ER, Monga M. Controversies in ureteroscopy: wire, basket, and sheath. Indian J Urol. 2013;29(3):244–8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goodman TM. Ureteroscopy with pediatric cystoscope in adults. Urology. 1977;9(4):394–7.

    Article  CAS  PubMed  Google Scholar 

  74. Lyon ES, Kyker JS, Schoenberg HW. Transurethral ureteroscopy in women: a ready addition to the urological armamentarium. J Urol. 1978;119(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  75. Marshall VF. Fiber optics in urology. J Urol. 1964;91:110–4.

    Article  CAS  PubMed  Google Scholar 

  76. Bagley DH, Huffman JL, Lyon ES. Flexible ureteropyeloscopy: diagnosis and treatment in the upper urinary tract system. J Urol. 1987;138:280–5.

    Article  CAS  PubMed  Google Scholar 

  77. Kavoussi L, Clayman RV, Basler J. Flexible actively deflectable fiberoptic ureteronephroscopy. J Urol. 1989;142:949–54.

    Article  CAS  PubMed  Google Scholar 

  78. Gridley CM, Knudsen BE. Digital ureteroscopes: technology update. Res Rep Urol. 2017;9:19–25.

    PubMed  PubMed Central  Google Scholar 

  79. Jones P, Rai BP, Somani BK. Outcomes of ureteroscopy for patients with stones in a solitary kidney: evidence from a systematic review. Cent European J Urol. 2016;69(1):83–90.

    PubMed  PubMed Central  Google Scholar 

  80. Ishii H, Couzins M, Aboumarzouk O, et al. Outcomes of systematic review of ureteroscopy for stone disease in the obese and morbidly obese population. J Endourol. 2016;30(2):135–45.

    Article  PubMed  Google Scholar 

  81. Drake T, Ali A, Somani BK. Feasibility and safety of bilateral same-session flexible ureteroscopy (FURS) for renal and ureteral stone disease. Cent European J Urol. 2015;68(2):193–6.

    PubMed  PubMed Central  Google Scholar 

  82. Ishii H, Rai B, Traxer O, et al. Outcome of ureteroscopy for stone disease in patients with horseshoe kidney: Review of world literature. Urol Ann. 2015;7(4):470–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rukin NJ, Somani BK, Patterson J, et al. Tips and tricks of ureteroscopy: consensus statement Part I. Basic ureteroscopy. Cent European J Urol. 2015;68(4):439–46.

    PubMed  PubMed Central  Google Scholar 

  84. Traxer O, Lechevallier E, Saussine C. Flexible ureteroscopy with Holmium laser: technical aspects. Progrès en urologie. 2008;18:929–37.

    Article  CAS  PubMed  Google Scholar 

  85. Noble MJ, Esac WE. Semirigid ureteroscopy: the Cleveland Clinic approach. In: Monga M, editor. Ureteroscopy: indications, instrumentation and technique. New York: Humana Press/Springer; 2013. p. 257–70.

    Chapter  Google Scholar 

  86. Rabah DM, Fabrizio MD. Flexible fiberoptic ureteropyeloscopy. In: Smith AD, Badlani GH, Baglev DH, et al., editors. Smith’s textbook of endourology. 2nd ed. Hamilton, London: BC Decker Inc; 2007. p. 237–42.

    Google Scholar 

  87. Giusti G, Proietti S, Villa L, et al. Current standard technique for modern flexible ureteroscopy: tips and tricks. Eur Urol. 2016;70(1):188–94.

    Article  PubMed  Google Scholar 

  88. Georgescu D, Multescu R, Mirciulescu V, et al. Instruments. In: Geavlete PA, editor. Retrograde ureteroscopy. Handbook of endourology: Elsevier; 2016. p. 29–35.

    Google Scholar 

  89. Miller J, Stoller ML. Intracorporeal lithotripsy: electrohydraulic, pneumatic, and ultrasonic. In: Monga M, editor. Ureteroscopy: indications, instrumentation and technique. New York: Humana Press/Springer; 2013. p. 149–60.

    Chapter  Google Scholar 

  90. Knudsen BE. Flexible ureteroscopy: holmium:YAG laser and optical fibers. In: Monga M, editor. Ureteroscopy: indications, instrumentation and technique. New York: Humana Press/Springer; 2013. p. 161–8.

    Chapter  Google Scholar 

  91. Dretler SP, Watson G, Parrish JA, Murray S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J Urol. 1987;137(3):386–9.

    Article  CAS  PubMed  Google Scholar 

  92. Marguet CG, Sung JC, Springhart WP, et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse Nd:YAG laser and the holmium:YAG laser. J Urol. 2005;173:1797–800.

    Article  PubMed  Google Scholar 

  93. Teichman JM, Chan KF, Cecconi PP, et al. Erbium : YAG versus holmium : YAG lithotripsy. J Urol. 2001;165(3):876–9.

    Article  CAS  PubMed  Google Scholar 

  94. Lee H, Kang HW, Teichman JM, et al. Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy. Lasers Surg Med. 2006;38(1):39–51.

    Article  PubMed  Google Scholar 

  95. Matlaga BR, Lingeman JE. Surgical management of stones: new technology. Adv Chronic Kidney Dis. 2009;16:60–4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Keeley FX Jr, Pillai M, Smith G, Chrisofos M, Tolley DA. Electrokinetic lithotripsy: safety, efficacy and limitations of a new form of ballistic lithotripsy. BJU Int. 1999;84(3):261–3.

    Article  PubMed  Google Scholar 

  97. Ali AA, Ali ZA, Halstead JC, et al. A novel method to prevent retrograde displacement of ureteric calculi during intracorporeal lithotripsy. BJU Int. 2004;94(3):441–2.

    Article  PubMed  Google Scholar 

  98. Bastawisy M, Gameel T, Radwan M, et al. A comparison of stone cone versus lidocaine jelly in the prevention of ureteral stone migration during ureteroscopic lithotripsy. Ther Adv Urol. 2011;3(5):203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kreydin E, Eisner B. Stone migration devices. In: Monga M, editor. Ureteroscopy: indications, instrumentation and technique. New York: Humana Press/Springer; 2013. p. 169–78.

    Chapter  Google Scholar 

  100. Hofbauer J, Hobarth K, Marberger M. Electrohydraulic versus pneumatic disintegration in the treatment of ureteral stones: a randomized, prospective trial. J Urol. 1995;153:623.

    Article  CAS  PubMed  Google Scholar 

  101. Garg S, Mandal AK, Singh SK, et al. Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int. 2009;82(3):341–5.

    Article  CAS  PubMed  Google Scholar 

  102. Santa-Cruz RW, Leveillee RJ, Krongrad A. Ex vivo comparison of four lithotripters commonly used in the ureter: what does it take to perforate? J Endourol. 1998;12:417.

    Article  CAS  PubMed  Google Scholar 

  103. Hecht SL, Wolf JS. Techniques for holmium laser lithotripsy of intrarenal calculi. Urology. 2013;81:442–5.

    Article  PubMed  Google Scholar 

  104. Auge BK, Pietrow PK, Lallas CD, et al. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18(1):33–6.

    Article  PubMed  Google Scholar 

  105. Geraghty RM, Ishii H, Somani BK. Outcomes of flexible ureteroscopy and laser fragmentation for treatment of large renal stones with and without the use of ureteral access sheaths: results from a university hospital with a review of literature. Scand J Urol. 2016;50(3):216–9.

    Article  PubMed  Google Scholar 

  106. Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of UAS during RIRS. J Urol. 2013;189:580–4.

    Article  PubMed  Google Scholar 

  107. Rukin NJ, Somani BK, Patterson J, et al. Tips and tricks of ureteroscopy: consensus statement. Part II. Advanced ureteroscopy. Cent European J Urol. 2016;69(1):98–104.

    PubMed  Google Scholar 

  108. Kurahashi T, Miyake H, Oka N, et al. Clinical outcome of ureteroscopic lithotripsy for 2,129 patients with ureteral stones. Urol Res. 2007;35(3):149–53.

    Article  PubMed  Google Scholar 

  109. Takazawa R, Kitayama S, Kobayashi S, et al. Transurethral lithotripsy with rigid and flexible ureteroscopy for renal and ureteral stones: results of the first 100 procedures. Hinyokika Kiyo. 2011;57(8):411–6.

    PubMed  Google Scholar 

  110. Tanriverdi O, Silay MS, Kadihasanoglu M, et al. Revisiting the predictive factors for intra-operative complications of rigid ureteroscopy: a 15-year experience. Urol J. 2012;9(2):457–64.

    PubMed  Google Scholar 

  111. Alcaide JRC, Elbers JR, Perez DL, et al. Flexible ureterorenoscopy (URS): technique and results. Arch Esp Urol. 2010;63(10):862–70.

    Google Scholar 

  112. Grasso M, Ficazzola M. Retrograde ureteropyeloscopy for lower pole caliceal calculi. J Urol. 1999;162:1904–8.

    Article  CAS  PubMed  Google Scholar 

  113. Fuganti PE, Pires S, Branco R, Porto J. Predictive factors for intraoperative complications in semirigid ureteroscopy: analysis of 1235 ballistic ureterolithotripsies. Urology. 2008;72(4):770–4.

    Article  PubMed  Google Scholar 

  114. Baş O, Tuygun C, Dede O, et al. Factors affecting complication rates of retrograde flexible ureterorenoscopy: analysis of 1571 procedures-a single-center experience. World J Urol. 2016;35(5):819–26.

    Article  PubMed  Google Scholar 

  115. El Harrech Y, Abakka N, El Anzaoui J, et al. Ureteral stenting after uncomplicated ureteroscopy for distal ureteral stones: a randomized, controlled trial. Minim Invasive Surg. 2014;2014:892890.

    PubMed  PubMed Central  Google Scholar 

  116. Jung GH, Jung JH, Ahn TS, et al. Comparison of retrograde intrarenal surgery versus a single-session percutaneous nephrolithotomy for lower-pole stones with a diameter of 15 to 30 mm: a propensity score-matching study. Korean J Urol. 2015;56(7):525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Klingler HC, et al. Stone treatment and coagulopathy. Eur Urol. 2003;43(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  118. Al Busaidy SS, Kurukkal SN, Al Hooti QM, et al. Is RIRS emerging as the preferred option for the management of 2 cm-4 cm renal stones: our experience. Can J Urol. 2016;23(4):8364–7.

    PubMed  Google Scholar 

  119. Liu K, Xiao CL, Liu YQ, et al. Management of calyceal diverticular calculi with stenotic infundibulum by flexible ureteroscopic holmium laser infundibulectomy and lithotripsy. Beijing Da Xue Xue Bao. 2015;47(4):618–21.

    PubMed  Google Scholar 

  120. Cohen J, Cohen S, Grasso M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 2013;111(3 Pt B):E127–31.

    Article  PubMed  Google Scholar 

  121. Marguet CG, Springhart WP, Tan YH, et al. Simultaneous combined use of flexible ureteroscopy and percutaneous nephrolithotomy to reduce the number of access tracts in the management of complex renal calculi. BJU Int. 2005;96(7):1097–100.

    Article  PubMed  Google Scholar 

  122. Hamamoto S, Yasui T, Okada A, et al. Developments in the technique of endoscopic combined intrarenal surgery in the prone split-leg position. Urology. 2014;84(3):565–70.

    Article  PubMed  Google Scholar 

  123. Hamamoto S, Yasui T, Okada A, et al. Efficacy of endoscopic combined intrarenal surgery in the prone split-leg position for staghorn calculi. J Endourol. 2015;29(1):19–24.

    Article  PubMed  Google Scholar 

  124. Sternberg KM, Jacobs BL, King BJ, et al. The prone ureteroscopic technique for managing large stone burdens. Can J Urol. 2015;22(2):7758–62.

    PubMed  Google Scholar 

  125. Bernardo N, Lopez-Silva M, Sanguinetti H, et al. Unplanned flexible ureteroscopy during percutaneous nephrolithotomy in the prone position. Actas Urol Esp. 2016;40(2):115–8.

    Article  CAS  PubMed  Google Scholar 

  126. Chew BH, Lange D. The future of ureteroscopy. Minerva Urol Nefrol. 2016;68(6):592–7.

    PubMed  Google Scholar 

  127. Fernstrom I, Johansson B. Percutaneous pyelolithotomy, a new extraction technique. Scand J Urol Nephrol. 1976;10:257–9.

    Article  CAS  PubMed  Google Scholar 

  128. Alken P, Hutschenreiter G, Gunther R, Marberger M. Percutaneous stone manipulation. J Urol. 1981;125:463–6.

    Article  CAS  PubMed  Google Scholar 

  129. Thomas K, Smith NC, Hegarty N, Glass JM. The Guy’s stone score—grading the complexity of percutaneous nephrolithotomy procedures. Urology. 2011;78(2):277–81.

    Article  PubMed  Google Scholar 

  130. Vernez SL, Okhunov Z, Motamedinia P, et al. Nephrolithometric scoring systems to predict outcomes of percutaneous nephrolithotomy. Rev Urol. 2016;18(1):15–27.

    PubMed  PubMed Central  Google Scholar 

  131. Torricelli FC, Padovani GP, Marchini GS, et al. Percutaneous nephrolithotomy in patients with solitary kidney: a critical outcome analysis. Int Braz J Urol. 2015;41(3):496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ishibashi M, Morita S, Rabito CA, et al. Evaluation of the therapeutic effect of percutaneous nephroureterolithotomy by Tc-99m diethylenetiaminepentaacetic acid (DTPA) renal scintigraphy--alteration of the renal fraction of blood flow, split-GFR, and renal mean transit time. Kurume Med J. 1990;37(4):285–91.

    Article  CAS  PubMed  Google Scholar 

  133. Sharma GR, Maheshwari PN, Sharma AG, et al. Fluoroscopy guided percutaneous renal access in prone position. World J Clin Cases. 2015;3(3):245–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Valdivia Uria JG, Valle Gerhold J, Lopez Lopez JA, et al. Technique and complications of percutaneous nephroscopy: experience with 557 patients in the supine position. J Urol. 1998;160:1975–8.

    Article  CAS  PubMed  Google Scholar 

  135. Ibarluzea G, Scoffone CM, Cracco CM, et al. Supine Valdivia and modified lithotomy position for simultaneous anterograde and retrograde endourological access. BJU Int. 2007;100:233–6.

    Article  PubMed  Google Scholar 

  136. Serra S, Corona A, De Lisa A. Endoscopic combined intra renal surgery (ECIRS) in prone position. Urologia. 2012;79(Suppl 19):121–4.

    PubMed  Google Scholar 

  137. Hoznek A, Rode J, Ouzaid I, et al. Modified supine percutaneous nephrolithotomy for large kidney and ureteral stones: technique and results. Eur Urol. 2012;61(1):164–70.

    Article  PubMed  Google Scholar 

  138. Kumar P, Bach C, Kachrilas S, et al. Supine percutaneous nephrolithotomy (PCNL): ‘in vogue’ but in which position? BJU Int. 2012;110(11 Pt C):E1018–21.

    Article  PubMed  Google Scholar 

  139. Kim SC, Lingeman JE. Percutaneous access to the urinary tract. In: Nakada SY, Pearle MS, editors. Advanced endourology: the complete clinical guide. Totowa, NJ: Humana Press Inc; 2006. p. 43–60.

    Chapter  Google Scholar 

  140. Ko R, Soucy F, Denstedt JD, Razvi H. Percutaneous nephrolithotomy made easier: a practical guide, tips and tricks. BJU Int. 2008;101(5):535–9.

    Article  PubMed  Google Scholar 

  141. Munver R, Delvecchio FC, Newman GE, Preminger GM. Critical analysis of supracostal access for percutaneous renal surgery. J Urol. 2001;166:1242–6.

    Article  CAS  PubMed  Google Scholar 

  142. El-Karamany T. A supracostal approach for percutaneous nephrolithotomy of staghorn calculi: a prospective study and review of previous reports. Arab J Urol. 2012;10(4):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Li J, Xiao B, Hu W, et al. Complication and safety of ultrasound guided percutaneous nephrolithotomy in 8,025 cases in China. Chin Med J (Engl). 2014;127(24):4184–9.

    Google Scholar 

  144. Helal M, Black T, Lockhart J, Figueroa TE. The Hickman peel-away sheath: alternative for pediatric percutaneous nephrolithotomy. J Endourol. 1997;11:171–2.

    Article  CAS  PubMed  Google Scholar 

  145. Jackman SV, Hedican SP, Peters CA, Docimo SG. Percutaneous nephrolithotomy in infants and preschool age children: experience with a new technique. Urology. 1998;52:697–701.

    Article  CAS  PubMed  Google Scholar 

  146. Jackman SV, Docimo SG, Cadeddu JA, Bishoff JT, Kavoussi LR, Jarrett TW. The “mini-perc” technique: a less invasive alternative to percutaneous nephrolithotomy. World J Urol. 1998;16:371–4.

    Article  CAS  PubMed  Google Scholar 

  147. Ganpule AP, Desai MR. What's new in percutaneous nephrolithotomy. Arab J Urol. 2012;10(3):317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Desai MR, Sharma R, Mishra S, et al. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol. 2011;186:140–5.

    Article  PubMed  Google Scholar 

  149. Sabnis RB, Ganesamoni R, Doshi A, et al. Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int. 2013;112(3):355–61.

    Article  PubMed  Google Scholar 

  150. Kaynar M, Sümer A, Şalvarcı A, et al. Micropercutaneous nephrolithotomy (Microperc®) in a two-year-old with the ‘all-seeing needle’. Urol Int. 2013;91(2):239–41.

    Article  PubMed  Google Scholar 

  151. Desai MR, Kukreja RA, Desai MM, et al. A prospective randomized comparison of type of nephrostomy drainage following percutaneous nephrostolithotomy: large bore versus small bore versus tubeless. J Urol. 2004;172(2):565–7.

    Article  PubMed  Google Scholar 

  152. Istanbulluoglu MO, Ozturk B, Gonen M, et al. Effectiveness of totally tubeless percutaneous nephrolithotomy in selected patients: a prospective randomized study. Int Urol Nephrol. 2009;41(3):541–5.

    Article  PubMed  Google Scholar 

  153. Chang CH, Wang CJ, Huang SW. Totally tubeless percutaneous nephrolithotomy: a prospective randomized controlled study. Urol Res. 2011;39(6):459–65.

    Article  CAS  PubMed  Google Scholar 

  154. Garofalo M, Pultrone CV, Schiavina R, et al. Tubeless procedure reduces hospitalization and pain after percutaneous nephrolithotomy: results of a multivariable analysis. Urolithiasis. 2013;41(4):347–53.

    Article  PubMed  Google Scholar 

  155. Javali T, Pathade A, Nagaraj HK. A Novel method of ensuring safe and accurate dilatation during percutaneous nephrolithotomy. Int Braz J Urol. 2015;41(5):1014–9.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Maheshwari PN, Sharma GR, Wagaskar VG. RE: A Novel method of ensuring safe and accurate dilalation during percutaneous nephrolithotomy. Int Braz J Urol. 2016;42(3):628–9.

    Article  PubMed  Google Scholar 

  157. Kumar S, Singh S, Singh P, Singh SK. Day care PNL using ‘Santosh-PGI hemostatic seal’ versus standard PNL: a randomized controlled study. Cent European J Urol. 2016;69(2):190–7.

    PubMed  PubMed Central  Google Scholar 

  158. Song Y, Ma Y, Song Y, Fei X. Evaluating the learning curve for percutaneous nephrolithotomy under total ultrasound guidance. PLoS One. 2015;10(8):e0132986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Armitage JN, Withington J, van der Meulen J, et al. Percutaneous nephrolithotomy in England: practice and outcomes described in the Hospital Episode Statistics database. BJU Int. 2014;113(5):777–82.

    Article  PubMed  Google Scholar 

  160. Yamaguchi A, Skolarikos A, Buchholz NP, et al. Clinical Research Office Of The Endourological Society Percutaneous Nephrolithotomy Study Group. Operating times and bleeding complications in percutaneous nephrolithotomy: a comparison of tract dilation methods in 5,537 patients in the Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study. J Endourol. 2011;25(6):933–9.

    Google Scholar 

  161. Meng XJ, Mi QW, Hu T, Zhong WD. Value of CT angiography in reducing the risk of hemorrhage associated with mini-percutaneous nephrolithotomy. Int Braz J Urol. 2015;41(4):690–6.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Shokeir AA. Transurethral cystolitholapaxy in children. J Endourol. 1994;8(2):157–9. Discussion 159–60.

    Article  CAS  PubMed  Google Scholar 

  163. Comisarow RH, Barkin M. Electrohydraulic cystolitholapaxy. Can J Surg. 1979;22(6):525–6.

    CAS  PubMed  Google Scholar 

  164. Teichman JM, Rogenes VJ, McIver BJ, Harris JM. Holmium:yttrium-aluminum-garnet laser cystolithotripsy of large bladder calculi. Urology. 1997;50(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  165. Li A, Ji C, Wang H, et al. Transurethral cystolitholapaxy with the AH-1 stone removal system for the treatment of bladder stones of variable size. BMC Urol. 2015;15:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gallego Vilar D, Beltran Persiva J, Pérez Mestre M, et al. Giant bladder lithiasis: case report and bibliographic review. Arch Esp Urol. 2011;64(4):383–7.

    PubMed  Google Scholar 

  167. Cohen J, Giuliano K, Sopko N, et al. Cystolitholapaxy in Ileal Conduit. Urol Case Rep. 2015;3(6):185–7.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Floyd MS Jr, Stubington SR. Mitrofanoff cystolitholapaxy: an innovative method of stone clearance in a hostile abdomen with an inaccessible urethra. Urol J. 2015;12(2):2115–8.

    PubMed  Google Scholar 

  169. Xiong Y, Yang S, Liao W, et al. Autonomic dysreflexia during cystolitholapaxy in patients with spinal cord injury. Minerva Urol Nefrol. 2015;67(2):85–90.

    CAS  PubMed  Google Scholar 

  170. Al-Marhoon MS, Sarhan OM, Awad BA, et al. Comparison of endourological and open cystolithotomy in the management of bladder stones in children. J Urol. 2009;181(6):2684–7. Discussion 2687–8.

    Article  PubMed  Google Scholar 

  171. Gamal W, Eldahshoury M, Hussein M, Hammady A. Cystoscopically guided percutaneous suprapubic cystolitholapaxy in children. Int Urol Nephrol. 2013;45(4):933–7.

    Article  PubMed  Google Scholar 

  172. Metwally AH, Sherief MH, Elkoushy MA. Safety and efficacy of cystoscopically guided percutaneous suprapubic cystolitholapaxy without fluoroscopic guidance. Arab J Urol. 2016;14(3):211–5.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Meria P, Milcent S, Desgrandchamps F, et al. Management of pelvic stones larger than 20 mm: laparoscopic transperitoneal pyelolithotomy or percutaneous nephrolithotomy? Urol Int. 2005;75(4):322–6.

    Article  PubMed  Google Scholar 

  174. Basiri A, Tabibi A, Nouralizadeh A, et al. Comparison of safety and efficacy of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy inpatients with renal pelvic stones: a randomized clinical trial. Urol J. 2014;11(6):1932–7.

    PubMed  Google Scholar 

  175. Rui X, Hu H, Yu Y, et al. Comparison of safety and efficacy of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy in patients with large renal pelvic stones: a meta-analysis. J Investig Med. 2016;64(6):1134–42.

    Article  PubMed  Google Scholar 

  176. Sasaki Y, Kohjimoto Y, Nishizawa S, et al. Laparoscopic pyelolithotomy in a horseshoe kidney. Hinyokika Kiyo. 2012;58(2):87–91.

    PubMed  Google Scholar 

  177. Ölçücüoğlu E, Çamtosun A, Biçer S, Bayraktar AM. Laparoscopic pyelolithotomy in a horseshoe kidney. Turk J Urol. 2014;40(4):240–4.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Chipde SS, Agrawal S. Retroperitoneoscopic pyelolithotomy: a minimally invasive alternative for the management of large renal pelvic stone. Int Braz J Urol. 2014;40(1):123–4. Discussion 124

    Article  PubMed  Google Scholar 

  179. Agrawal S, Chipde SS, Kalathia J, Agrawal R. Renal stone in crossed fused renal ectopia and its laparoscopic management: case report and review of literature. Urol Ann. 2016;8(2):236–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Stein RJ, Turna B, Nguyen MM, et al. Laparoscopic pyeloplasty with concomitant pyelolithotomy: technique and outcomes. J Endourol. 2008;22:1251–5.

    Article  PubMed  Google Scholar 

  181. Gandhi HR, Thomas A, Nair B, Pooleri G. Laparoscopic pyelolithotomy: an emerging tool for complex staghorn nephrolithiasis in high-risk patients. Arab J Urol. 2015;13(2):139–45.

    Article  PubMed  Google Scholar 

  182. Agrawal V, Bajaj J, Acharya H, et al. Laparoscopic management of pediatric renal and ureteric stones. J Pediatr Urol. 2013;9(2):230–3.

    Article  PubMed  Google Scholar 

  183. Al-Hunayan A, Abdulhalim H, El-Bakry E, et al. Laparoscopic pyelolithotomy: is the retroperitoneal route a better approach? Int J Urol. 2009;16(2):181–6.

    Article  PubMed  Google Scholar 

  184. Pastore AL, Palleschi G, Silvestri L, et al. Combined laparoscopic pyelolithotomy and endoscopic pyelolithotripsy for staghorn calculi: long-term follow-up results from a case series. Ther Adv Urol. 2016;8(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Simforoosh N, Radfar MH, Nouralizadeh A, et al. Laparoscopic anatrophic nephrolithotomy for management of staghorn renal calculi. J Laparoendosc Adv Surg Tech A. 2013;23(4):306–10.

    Article  PubMed  Google Scholar 

  186. Ghani KR, Rogers CG, Sood A, et al. Robot-assisted anatrophic nephrolithotomy with renal hypothermia for managing staghorn calculi. J Endourol. 2013;27(11):1393–8.

    Article  PubMed  Google Scholar 

  187. Ghani KR, Trinh QD, Jeong W, et al. Robotic nephrolithotomy and pyelolithotomy with utilization of the robotic ultrasound probe. Int Braz J Urol. 2014;40(1):125–6. Discussion 126.

    Article  PubMed  Google Scholar 

  188. King SA, Klaassen Z, Madi R. Robot-assisted anatrophic nephrolithotomy: description of technique and early results. J Endourol. 2014;28(3):325–9.

    Article  PubMed  Google Scholar 

  189. Garg M, Singh V, Sinha RJ, et al. Prospective randomized comparison of open versus transperitoneal laparoscopic ureterolithotomy: experience of a single center from Northern India. Curr Urol. 2013;7(2):83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Khalil M, Omar R, Abdel-Baky S, et al. Laparoscopic ureterolithotomy; which is better: Transperitoneal or retroperitoneal approach? Turk J Urol. 2015;41(4):185–90.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Torricelli FC, Monga M, Marchini GS, et al. Semi-rigid ureteroscopic lithotripsy versus laparoscopic ureterolithotomy for large upper ureteral stones: a meta-analysis of randomized controlled trials. Int Braz J Urol. 2016;42(4):645–54.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Şahin S, Aras B, Ekşi M, et al. Laparoscopic ureterolithotomy. JSLS. 2016;20(1):e2016.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ma L, Yu DM, Zhang ZG, et al. Transperitoneal laparoscopic ureterolithotomy for upper ureteral calculi: a report of 1171 cases. Zhonghua Yi Xue Za Zhi. 2013;93(20):1577–9.

    PubMed  Google Scholar 

  194. Verit A, Savas M, Ciftci H, et al. Outcomes of urethral calculi patients in an endemic region and an undiagnosed primary fossa navicularis calculus. Urol Res. 2006;34(1):37–40.

    Article  PubMed  Google Scholar 

  195. Akhtar J, Ahmed S, Zamir N. Management of impacted urethral stones in children. J Coll Physicians Surg Pak. 2012;22(8):510–3.

    PubMed  Google Scholar 

  196. Walker BR, Hamilton BD. Urethral calculi managed with transurethral Holmium laser ablation. J Pediatr Surg. 2001;36(9):E16.

    Article  CAS  PubMed  Google Scholar 

  197. Smith MJ, Boyce WH. Anatrophic nephrotomy and plastic calyrhaphy. J Urol. 1968;99(5):521–7.

    Article  CAS  PubMed  Google Scholar 

  198. Gil-Vernet JM, Caralps A. Human renal homotransplantation. New surgical technique. Urol Int. 1968;23(3):201–23.

    Article  CAS  PubMed  Google Scholar 

  199. Gil-Vernet JM, Carretero P, Caralps A, Ballesteros JJ. New surgical technique for balanitic hypospadias correction. J Urol. 1974;112(5):673.

    Article  CAS  PubMed  Google Scholar 

  200. Gil-Vernet JM. A new technique for surgical correction of vesicoureteral reflux. J Urol. 1984;131(3):456–8.

    Article  CAS  PubMed  Google Scholar 

  201. Gil-Vernet JM, Gutierrez del Pozo R, Carretero P, et al. Urogenital diaphragm raising maneuver. J Urol. 1988;140(3):555–8.

    Article  CAS  PubMed  Google Scholar 

  202. Gil-Vernet JM, Gil-Vernet A, Campos JA. New surgical approach for treatment of complex vesicovaginal fistula. J Urol. 1989;141(3):513–6.

    Article  CAS  PubMed  Google Scholar 

  203. Gil-Vernet JM, Gil-Vernet A, Caralps A, et al. Orthotopic renal transplant and results in 139 consecutive cases. J Urol. 1989;142(2 Pt 1):248–52.

    Article  CAS  PubMed  Google Scholar 

  204. Gil-Vernet S. Pathologia Urogenital: Biologia y pathologia de la prostata. T.1. Madird: Editorial Paz-Montalvo; 1953.

    Google Scholar 

  205. Crosby RW, Cody J. Max Brödel: the man who put art into medicine. New York: Springer; 1991.

    Book  Google Scholar 

  206. Brödel M. The intrinsic blood-vessels of the kidney and their significance in nephrotomy. The Johns Hopkins Hospital Bulletin. XII/118; 1901.

    Google Scholar 

  207. Latarjet M, Ruiz Liard A. Systema urinario. Riñόn. In: Anatomía Humana, vol. 2. 4th ed. Buenos Aires: Editorial Medica Panamericana; 2008. p. 1509–26.

    Google Scholar 

  208. Lunardi P, Timsit MO, Roumiguie M, et al. Single procedure treatment of complex nephrolithiasis: about a modern series of anatrophic nephrolithotomy. Prog Urol. 2015;25(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  209. Bove AM, Altobelli E, Buscarini M. Indication to open anatrophic nephrolithotomy in the twenty-first century: a case report. Case Rep Urol. 2012;2012:851020.

    PubMed  PubMed Central  Google Scholar 

  210. Aminsharifi A, Irani D, Masoumi M, et al. The management of large staghorn renal stones by percutaneous versus laparoscopic versus open nephrolithotomy: a comparative analysis of clinical efficacy and functional outcome. Urolithiasis. 2016;44(6):551–7.

    Article  PubMed  Google Scholar 

  211. Mahran MR, Dawaba MS. Cystolitholapaxy versus cystolithotomy in children. J Endourol. 2000;14(5):423–5.

    Article  CAS  PubMed  Google Scholar 

  212. Ma C, Lu B, Sun E. Giant bladder stone in a male patient: a case report. Medicine (Baltimore). 2016;95(30):e4323.

    Article  Google Scholar 

  213. Randall A. Giant vesical calculus. J Urol. 1920;5(2):119–25.

    Article  Google Scholar 

  214. Moran ME. The largest stone of all! In: Urolithiasis. A comprehensive history. Now York: Springer; 2014. p. 351–63.

    Chapter  Google Scholar 

  215. Pearle MS, Goldfarb DS, Assimos DG, et al. Medical management of kidney stones: AUA guideline. J Urol. 2014;192(2):316–24.

    Article  PubMed  Google Scholar 

  216. Prezioso D, Strazzullo P, Lotti T, et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl. 2015;87(2):105–20.

    Article  PubMed  Google Scholar 

  217. Bates GP, Miller VS. Sweat rate and sodium loss during work in the heat. J Occup Med Toxicol. 2008;3:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Godek SF, Peduzzi C, Burkholder R, et al. Sweat rates, sweat sodium concentrations, and sodium losses in 3 groups of professional football players. J Athl Train. 2010;45(4):364–71.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Brake DJ, Bates GP. Fluid losses and hydration status of industrial workers under thermal stress working extended shifts. Occup Environ Med. 2003;60(2):90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pak CY, Sakhaee K, Fuller CJ. Physiological and physiochemical correction and prevention of calcium stone formation by potassium citrate therapy. Trans Assoc Am Physicians. 1983;96:294–305.

    CAS  PubMed  Google Scholar 

  221. Sakhaee K, Nicar M, Hill K, Pak CY. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 1983;24(3):348–52.

    Article  CAS  PubMed  Google Scholar 

  222. Siener R. Can the manipulation of urinary pH by beverages assist with the prevention of stone recurrence? Urolithiasis. 2016;44(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  223. Sorensen MD, Hsi RS, Chi T. Dietary intake of fiber, fruit and vegetables decreases the risk of incident kidney stones in women: a Women’s Health Initiative report. J Urol. 2014;192(6):1694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Manfredini R, De Giorgi A, Storari A, Fabbian F. Pears and renal stones: possible weapon for prevention? A comprehensive narrative review. Eur Rev Med Pharmacol Sci. 2016;20(3):414–25.

    Google Scholar 

  225. Nijenhuis T, Vallon V, van der Kemp AW, et al. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005;115:1651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Laerum E, Larsen S. Thiazide prophylaxis of urolithiasis. A double-blind study in general practice. Acta Med Scand. 1984;215:383–9. An early RCT to show the effect of HCTZ in the prevention of calcium stone recurrence.

    Article  CAS  PubMed  Google Scholar 

  227. Escribano J, Balaguer A, Roqué i Figuls M, et al. Dietary interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2014;(2):CD006022.

    Google Scholar 

  228. Escribano J, Balaguer A, Pagone F, et al. Pharmacological interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2009;(1):CD004754.

  229. Nicar MJ, Hill K, Pak CY. Inhibition by citrate of spontaneous precipitation of calcium oxalate in vitro. J Bone Miner Res. 1987;2(3):215–20.

    Article  CAS  PubMed  Google Scholar 

  230. Barcelo P, Wuhl O, Servitge E, et al. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol. 1993;150(6):1761–4.

    Article  CAS  PubMed  Google Scholar 

  231. Coe FL, Evan A, Worcester E. Pathophysiology-based treatment of idiopathic calcium kidney stones. Clin J Am Soc Nephrol. 2011;6(8):2083–92.

    Article  PubMed  Google Scholar 

  232. Xu H, Zisman AL, Coe FL, Worcester EM. Kidney stones: an update on current pharmacological management and future directions. Expert Opin Pharmacother. 2013;14(4):435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gul Z, Monga M. Medical and dietary therapy for kidney stone prevention. Korean J Urol. 2014;55(12):775–9.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Kok DJ. Metaphylaxis, diet and lifestyle in stone disease. Arab J Urol. 2012;10(3):240–9.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Carrasco A Jr, Granberg CF, Gettman MT, et al. Surgical management of stone disease in patients with primary hyperoxaluria. Urology. 2015;85(3):522–6.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Lorenzo V, Torres A, Salido E. Primary hyperoxaluria. Nefrologia. 2014;34(3):398–412.

    PubMed  Google Scholar 

  237. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001;59(1):270–6.

    Article  CAS  PubMed  Google Scholar 

  238. Ettinger B, Tang A, Citron JT, et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315:1386–9.

    Article  CAS  PubMed  Google Scholar 

  239. Beara-Lasic L, Pillinger MH, Goldfarb DS. Advances in the management of gout: critical appraisal of febuxostat in the control of hyperuricemia. Int J Nephrol Renovasc Dis. 2010;3:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Preminger GM, Sakhaee K, Skurla C, et al. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J Urol. 1985;134:20–3.

    Article  CAS  PubMed  Google Scholar 

  241. Maalouf NM, Cameron MA, Moe OW, et al. Novel insights into the pathogenesis of uric acid nephrolithiasis. Curr Opin Nephrol Hypertens. 2004;13:181.

    Article  PubMed  Google Scholar 

  242. Biyani CS, Cartledge JJ. Cystinuria: diagnosis and management. EAU-EBU Update Series. 2006;4:175–83.

    Article  Google Scholar 

  243. Preminger GM, Assimos DG, Lingeman JE, et al. AUA Nephrolithiasis Guideline Panel. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):1991–2000.

    Google Scholar 

  244. Crawhall JC, Scowen EF, Watts RW. Effect of penicillamine on cystinuria. Br Med J. 1963;1:588–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lotz M, Bartter FC. Stone dissolution with D-penicillamine in cystinuria. Br Med J. 1965;2:1408–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Goldfarb DS, Coe FL, Asplin JR. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 2006;69:1041–7.

    Article  CAS  PubMed  Google Scholar 

  247. Fattah H, Hambaroush Y, Goldfarb DS. Cystine nephrolithiasis. Transl Androl Urol. 2014;3(3):228–33.

    PubMed  PubMed Central  Google Scholar 

  248. Griffith DP, Gleeson MJ, Lee H, et al. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol. 1991;20:243.

    CAS  PubMed  Google Scholar 

  249. Rodman JS, Williams JJ, Jones RL. Hypercoagulability produced by treatment with acetohydroxamic acid. Clin Pharmacol Ther. 1987;42:346.

    Article  CAS  PubMed  Google Scholar 

  250. Faridi P, Roozbeh J, Mohagheghzadeh A. Ibn-Sina’s life and contributions to medicinal therapies of kidney calculi. Iran J Kidney Dis. 2012;6(5):339–45.

    PubMed  Google Scholar 

  251. Nasim MJ, Bin Asad MH, Durr-e-Sabih, et al. Gist of medicinal plants of Pakistan having ethnobotanical evidences to crush renal calculi (kidney stones). Acta Pol Pharm. 2014;71(1):3–10.

    Google Scholar 

  252. Bahmani M, Baharvand-Ahmadi B, Tajeddini P, et al. Identification of medicinal plants for the treatment of kidney and urinary stones. J Renal Inj Prev. 2016;5(3):129–33.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Boim MA, Heilberg IP, Schor N. Phyllanthus niruri as a promising alternative treatment for nephrolithiasis. Int Braz J Urol. 2010;36(6):657–64. Discussion 664.

    Article  PubMed  Google Scholar 

  254. Kieley S, Dwivedi R, Monga M. Ayurvedic medicine and renal calculi. J Endourol. 2008;22(8):1613–6.

    Article  PubMed  Google Scholar 

  255. Micali S, Sighinolfi MC, Celia A, et al. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study. J Urol. 2006;176(3):1020–2.

    Article  CAS  PubMed  Google Scholar 

  256. Erickson SB, Vrtiska TJ, Canzanello VJ, Lieske JC. Cystone® for 1 year did not change urine chemistry or decrease stone burden in cystine stone formers. Urol Res. 2011;39(3):197–203.

    Google Scholar 

  257. Erickson SB, Vrtiska TJ, Lieske JC. Effect of Cystone® on urinary composition and stone formation over a one year period. Phytomedicine. 2011;18(10):863–7.

    Google Scholar 

  258. Atmani F, Slimani Y, Mimouni M, Hacht B. Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. BJU Int. 2003;92(1):137–40.

    Article  CAS  PubMed  Google Scholar 

  259. Rodgers AL, Webber D, Ramsout R, Gohel MD. Herbal preparations affect the kinetic factors of calcium oxalate crystallization in synthetic urine: implications for kidney stone therapy. Urolithiasis. 2014;42(3):221–5.

    Article  PubMed  Google Scholar 

  260. Monti E, Trinchieri A, Magri V, et al. Herbal medicines for urinary stone treatment. A systematic review. Arch Ital Urol Androl. 2016;88(1):38–46.

    Article  PubMed  Google Scholar 

  261. Iqbal MW, Shin RH, Youssef RF, et al. Should metabolic evaluation be performed in patients with struvite stones? Urolithiasis. 2017;45(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  262. Alamuri P, Eaton KA, Himpsl SD, et al. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteusmirabilis urinary tract infection. Infect Immun. 2009;77(2):632–41.

    Article  CAS  PubMed  Google Scholar 

  263. Hoppe B, Groothoff JW, Hulton SA, et al. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant. 2011;26(11):3609–15.

    Article  PubMed  Google Scholar 

  264. Jairath A, Parekh N, Otano N, et al. Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand J Urol. 2015;49(4):334–7.

    Article  CAS  PubMed  Google Scholar 

  265. Rimer JD, An Z, Zhu Z, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330(6002):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Goldfarb DS. Potential pharmacological treatments for cystinuria and for calcium stones associated with hyperuricosuria. Clin J Am Soc Nephrol. 2011;6(8):2093–7.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Sahota A, Parihar JS, Yang M, et al. Novel cystine ester mimics for the treatment of cystinuria-induced urolithiasis in a knockout mouse model. Urology. 2014;84(5):1249.e9–15.

    Article  Google Scholar 

  268. Lee MH, Sahota A, Ward MD, Goldfarb DS. Cystine growth inhibition through molecular mimicry: a new paradigm for the prevention of crystal diseases. Curr Rheumatol Rep. 2015;17(5):33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Wendt-Nordahl G, Sagi S, Bolenz C, et al. Evaluation of cystine transport in cultured human kidney cells and establishment of cystinuria type I phenotype by antisense technology. Urol Res. 2008;36(1):25–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Al-Mamari, S.A. (2017). Treatment of Urolithiasis. In: Urolithiasis in Clinical Practice. In Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-62437-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62437-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62436-5

  • Online ISBN: 978-3-319-62437-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics