Skip to main content

Preload Dependency Dynamic Indices

  • Chapter
  • First Online:
Hemodynamic Monitoring in the ICU
  • 2371 Accesses

Abstract

Volume expansion was formerly assessed by invasive cardiac output monitoring and intracardiac pressure measurement, following the concept of “fluid challenge” [1]. Recently, fluid responsiveness was then evaluated in response to volume expansion. The recent concept is based on the Starling curve. For instance, following a volume expansion, a patient may be situated on the ascending portion of the curve (with a significant increase in cardiac output without massive increases in filling pressures) or may be located on the flat portion of the curve (with a small increase in cardiac output along with drastically increased filling pressures) [2]. In the past, no indication was predictive of the potential effectiveness of volume expansion, and the only evidence used to guide fluid therapy was the preload indices, also known as “static” indices. However, the central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP) were never shown to reliably predict the hemodynamic benefit of volume expansion [3, 4] to a greater extent than ventricular diameter or surface measurements [5, 6]. Although a low preload value could still achieve a volume expansion in shocked (and not yet resuscitated) patients, the use of static preload indices is currently not recommended to guide fluid therapy in the ICU. In fact, this practice is likely to lead to the incorrect administration of intravenous fluids and to result in an increased risk or aggravation of pulmonary edema, hypoxemia, or ARDS [7, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34(5):1333–1337

    Article  PubMed  Google Scholar 

  2. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4(5):282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121(6):2000–2008

    Article  PubMed  Google Scholar 

  4. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35(1):64–68

    Article  PubMed  Google Scholar 

  5. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119(3):867–873

    Article  CAS  PubMed  Google Scholar 

  6. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89(6):1313–1321

    Article  CAS  PubMed  Google Scholar 

  7. Monnet X, Teboul JL (2006) Invasive measures of left ventricular preload. Curr Opin Crit Care 12(3):235–240

    Article  PubMed  Google Scholar 

  8. Teboul JL (2005) SRLF experts recommendations: indicators of volume resuscitation during circulatory failure. Ann Fr Anesth Reanim 24(5):568–576; quiz 77–81

    Article  PubMed  Google Scholar 

  9. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol Respir Environ Exerc Physiol 56(5):1237–1245

    CAS  PubMed  Google Scholar 

  10. Wallis TW, Robotham JL, Compean R, Kindred MK (1983) Mechanical heart-lung interaction with positive end-expiratory pressure. J Appl Physiol Respir Environ Exerc Physiol 54(4):1039–1047

    CAS  PubMed  Google Scholar 

  11. Garcia X, Pinsky MR (2011) Clinical applicability of functional hemodynamic monitoring. Ann Intensive Care 1:35

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marik PE, Monnet X, Teboul JL (2011) Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 1(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34(5):1402–1407

    Article  PubMed  Google Scholar 

  14. Reich DL, Konstadt SN, Raissi S, Hubbard M, Thys DM (1989) Trendelenburg position and passive leg raising do not significantly improve cardiopulmonary performance in the anesthetized patient with coronary artery disease. Crit Care Med 17(4):313–317

    Article  CAS  PubMed  Google Scholar 

  15. Thomas M, Shillingford J (1965) The circulatory response to a standard postural change in ischaemic heart disease. Br Heart J 27:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rocha P, Lemaigre D, Leroy M, Desfonds P, De Zuttere D, Liot F (1987) Nitroglycerin-induced decrease of carbon monoxide diffusion capacity in acute myocardial infarction reversed by elevating legs. Crit Care Med 15(2):131–133

    Article  CAS  PubMed  Google Scholar 

  17. Takagi S, Yokota M, Iwase M, Yoshida J, Hayashi H, Sotobata I et al (1989) The important role of left ventricular relaxation and left atrial pressure in the left ventricular filling velocity profile. Am Heart J 118(5 Pt 1):954–962

    Article  CAS  PubMed  Google Scholar 

  18. Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189(3):609–615

    CAS  PubMed  Google Scholar 

  19. Chihara E, Hashimoto S, Kinoshita T, Hirose M, Tanaka Y, Morimoto T (1992) Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol 262(4 Pt 2):H1116–H1121

    CAS  PubMed  Google Scholar 

  20. Wong DH, Tremper KK, Zaccari J, Hajduczek J, Konchigeri HN, Hufstedler SM (1988) Acute cardiovascular response to passive leg raising. Crit Care Med 16(2):123–125

    Article  CAS  PubMed  Google Scholar 

  21. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121(4):1245–1252

    Article  PubMed  Google Scholar 

  22. Lafanechere A, Pene F, Goulenok C, Delahaye A, Mallet V, Choukroun G et al (2006) Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care 10(5):R132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F (2009) Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care 13(6):R195

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168(6):671–676

    Article  PubMed  Google Scholar 

  25. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95(5):1083–1088 [Clinical Trial]

    Article  CAS  PubMed  Google Scholar 

  26. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30(9):1734–1739 [Clinical Trial]

    Article  PubMed  Google Scholar 

  27. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67(4):498–502

    Article  CAS  PubMed  Google Scholar 

  28. Perel A, Pizov R, Cotev S (2014) Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness. Intensive Care Med 40(6):798–807

    Article  PubMed  Google Scholar 

  29. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27(11):2407–2412 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  30. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162(1):134–138

    Article  CAS  PubMed  Google Scholar 

  31. Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24(8):1381–1387

    Article  CAS  PubMed  Google Scholar 

  32. Pizov R, Ya’ari Y, Perel A (1988) Systolic pressure variation is greater during hemorrhage than during sodium nitroprusside-induced hypotension in ventilated dogs. Anesth Analg 67(2):170–174

    Article  CAS  PubMed  Google Scholar 

  33. Pizov R, Ya’ari Y, Perel A (1989) The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg 68(2):150–156

    Article  CAS  PubMed  Google Scholar 

  34. Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15(6):368–371

    Article  CAS  PubMed  Google Scholar 

  35. Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M et al (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78(1):46–53

    Article  CAS  PubMed  Google Scholar 

  36. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89(6):1309–1310

    Article  CAS  PubMed  Google Scholar 

  37. Stoneham MD (1999) Less is more … using systolic pressure variation to assess hypovolaemia. Br J Anaesth 83(4):550–551

    Article  CAS  PubMed  Google Scholar 

  38. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159(3):935–939

    Article  CAS  PubMed  Google Scholar 

  39. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL (2009) Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110(5):1092–1097

    Article  PubMed  Google Scholar 

  40. Kim HK, Pinsky MR (2008) Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med 36(10):2858–2862 [Comparative Study Research Support, NIH, Extramural]

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muller L, Louart G, Bousquet PJ, Candela D, Zoric L, de La Coussaye JE et al (2010) The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med 36(3):496–503

    Article  PubMed  Google Scholar 

  42. Vistisen ST, Koefoed-Nielsen J, Larsson A (2010) Should dynamic parameters for prediction of fluid responsiveness be indexed to the tidal volume? Acta Anaesthesiol Scand 54(2):191–198 [Comparative Study Research Support, Non-US Gov’t]

    Article  CAS  PubMed  Google Scholar 

  43. Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P et al (2007) Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med 33(1):163–171

    Article  PubMed  Google Scholar 

  44. Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Noninvasive Doppler determination of cardiac output in man. Clin Valid Circ 67(3):593–602

    CAS  Google Scholar 

  45. Slama M, Masson H, Teboul JL, Arnout ML, Susic D, Frohlich E et al (2002) Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol 283(4):H1729–H1733

    Article  CAS  PubMed  Google Scholar 

  46. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR et al (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31(9):1195–1201

    Article  PubMed  Google Scholar 

  47. Cannesson M, Tran NP, Cho M, Hatib F, Michard F (2012) Predicting fluid responsiveness with stroke volume variation despite multiple extrasystoles. Crit Care Med 40(1):193–198

    Article  PubMed  Google Scholar 

  48. Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D (2005) Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 9(5):R562–R568

    Article  PubMed  PubMed Central  Google Scholar 

  49. Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K (2007) Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 33(6):993–999

    Article  PubMed  Google Scholar 

  50. Cannesson M, Desebbe O, Hachemi M, Jacques D, Bastien O, Lehot JJ (2007) Respiratory variations in pulse oximeter waveform amplitude are influenced by venous return in mechanically ventilated patients under general anaesthesia. Eur J Anaesthesiol 24(3):245–251 [Clinical Trial]

    Article  CAS  PubMed  Google Scholar 

  51. Monnet X, Lamia B, Teboul JL (2005) Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution? Crit Care 9(5):429–430

    Article  PubMed  PubMed Central  Google Scholar 

  52. Heenen S, De Backer D, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10(4):R102

    Article  PubMed  PubMed Central  Google Scholar 

  53. Delerme S, Castro S, Freund Y, Nazeyrollas P, Josse MO, Madonna-Py B et al (2010) Relation between pulse oximetry plethysmographic waveform amplitude induced by passive leg raising and cardiac index in spontaneously breathing subjects. Am J Emerg Med 28(4):505–510

    Article  PubMed  Google Scholar 

  54. Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M (2008) Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care 12(2):R37

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C et al (2010) Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 36(9):1475–1483

    Article  PubMed  Google Scholar 

  56. Broch O, Bein B, Gruenewald M, Hocker J, Schottler J, Meybohm P et al (2011) Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand 55(6):686–693

    Article  CAS  PubMed  Google Scholar 

  57. Yamaura K, Irita K, Kandabashi T, Tohyama K, Takahashi S (2007) Evaluation of finger and forehead pulse oximeters during mild hypothermic cardiopulmonary bypass. J Clin Monit Comput 21(4):249–252

    Article  PubMed  Google Scholar 

  58. Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C et al (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33(4):575–590

    Article  PubMed  Google Scholar 

  59. Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F (2011) Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care 15(4):R168

    Article  PubMed  PubMed Central  Google Scholar 

  60. Landsverk SA, Hoiseth LO, Kvandal P, Hisdal J, Skare O, Kirkeboen KA (2008) Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology 109(5):849–855

    Article  PubMed  Google Scholar 

  61. Cannesson M, Awad AA, Shelley K (2009) Oscillations in the plethysmographic waveform amplitude: phenomenon hides behind artifacts. Anesthesiology 111(1):206–207; author reply 7–8

    Article  PubMed  Google Scholar 

  62. Desgranges FP, Desebbe O, Ghazouani A, Gilbert K, Keller G, Chiari P et al (2011) Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. Br J Anaesth 107(3):329–335

    Article  PubMed  Google Scholar 

  63. Awad AA, Ghobashy MA, Ouda W, Stout RG, Silverman DG, Shelley KH (2001) Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg 92(6):1483–1486

    Article  CAS  PubMed  Google Scholar 

  64. Bendjelid K (2008) The pulse oximetry plethysmographic curve revisited. Curr Opin Crit Care 14(3):348–353

    Article  PubMed  Google Scholar 

  65. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101(2):200–206

    Article  CAS  PubMed  Google Scholar 

  66. Mintz GS, Kotler MN, Parry WR, Iskandrian AS, Kane SA (1981) Reat-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation 64(5):1018–1025

    Article  CAS  PubMed  Google Scholar 

  67. Nakao S, Come PC, McKay RG, Ransil BJ (1987) Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol 59(1):125–132 [Research Support, US Gov’t, PHS]

    Article  CAS  PubMed  Google Scholar 

  68. Jardin F, Farcot JC, Boisante L, Prost JF, Gueret P, Bourdarias JP (1982) Mechanism of paradoxic pulse in bronchial asthma. Circulation 66(4):887–894 [Research Support, Non-US Gov’t]

    Article  CAS  PubMed  Google Scholar 

  69. Himelman RB, Kircher B, Rockey DC, Schiller NB (1988) Inferior vena cava plethora with blunted respiratory response: a sensitive echocardiographic sign of cardiac tamponade. J Am Coll Cardiol 12(6):1470–1477 [Research Support, US Gov’t, PHS]

    Article  CAS  PubMed  Google Scholar 

  70. Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH (1984) Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 53(4):579–585

    Article  CAS  PubMed  Google Scholar 

  71. Jue J, Chung W, Schiller NB (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5(6):613–619

    Article  CAS  PubMed  Google Scholar 

  72. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30(9):1834–1837

    Article  PubMed  Google Scholar 

  73. Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F et al (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30(9):1740–1746

    PubMed  Google Scholar 

  74. Jullien T, Valtier B, Hongnat JM, Dubourg O, Bourdarias JP, Jardin F (1995) Incidence of tricuspid regurgitation and vena caval backward flow in mechanically ventilated patients. A color Doppler and contrast echocardiographic study. Chest 107(2):488–493 [Research Support, Non-US Gov’t]

    Article  CAS  PubMed  Google Scholar 

  75. Weissler AM (1987) The systolic time intervals and risk stratification after acute myocardial infarction. J Am Coll Cardiol 9(1):161–162

    Article  CAS  PubMed  Google Scholar 

  76. Singer M, Allen MJ, Webb AR, Bennett ED (1991) Effects of alterations in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 19(9):1138–1145

    Article  CAS  PubMed  Google Scholar 

  77. Weissler AM, Harris WS, Schoenfeld CD (1969) Bedside technics for the evaluation of ventricular function in man. Am J Cardiol 23(4):577–583

    Article  CAS  PubMed  Google Scholar 

  78. Tournadre JP, Muchada R, Lansiaux S, Chassard D (1999) Measurements of systolic time intervals using a transoesophageal pulsed echo-Doppler. Br J Anaesth 83(4):630–636

    Article  CAS  PubMed  Google Scholar 

  79. Weissler AM (1977) Current concepts in cardiology. Systolic-time intervals. N Engl J Med 296(6):321–324

    Article  CAS  PubMed  Google Scholar 

  80. Boudoulas H (1990) Systolic time intervals. Eur Heart J 11(Suppl I):93–104 [Review]

    Article  PubMed  Google Scholar 

  81. Mertens HM, Mannebach H, Trieb G, Gleichmann U (1981) Influence of heart rate on systolic time intervals: effects of atrial pacing versus dynamic exercise. Clin Cardiol 4(1):22–27

    Article  CAS  PubMed  Google Scholar 

  82. Ferro G, Ricciardelli B, Sacca L, Chiariello M, Volpe M, Tari MG et al (1980) Relationship between systolic time intervals and heart rate during atrial or ventricular pacing in normal subjects. Jpn Heart J 21(6):765–771 [Research Support, Non-US Gov’t]

    Article  CAS  PubMed  Google Scholar 

  83. Hamada M, Ito T, Hiwada K, Kokubu T, Genda A, Takeda R (1991) Characteristics of systolic time intervals in patients with pheochromocytoma. Jpn Circ J 55(5):417–426

    Article  CAS  PubMed  Google Scholar 

  84. Shoemaker WC, Wo CC, Bishop MH, Appel PL, Van de Water JM, Harrington GR et al (1994) Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation. Crit Care Med 22(12):1907–1912 [Clinical Trial Comparative Study Multicenter Study Research Support, US Gov’t, PHS]

    Article  CAS  PubMed  Google Scholar 

  85. Bendjelid K, Suter PM, Romand JA (2004) The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol 96(1):337–342

    Article  PubMed  Google Scholar 

  86. Wallace AG, Mitchell JH, Skinner NS, Sarnoff SJ (1963) Duration of the phases of left ventricular systole. Circ Res 12:611–619

    Article  CAS  PubMed  Google Scholar 

  87. Matsuno Y, Morioka S, Murakami Y, Kobayashi S, Moriyama K (1988) Mechanism of prolongation of pre-ejection period in the hypertrophied left ventricle with normal systolic function in unanesthetized hypertensive dogs. Clin Cardiol 11(10):702–706

    Article  CAS  PubMed  Google Scholar 

  88. Brundin T, Hedenstierna G, McCarthy G (1976) Effect of intermittent positive pressure ventilation on cardiac systolic time intervals. Acta Anaesthesiol Scand 20(4):278–284

    Article  CAS  PubMed  Google Scholar 

  89. Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K (2005) Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med 33(11):2534–2539

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giraud, R., Bendjelid, K. (2016). Preload Dependency Dynamic Indices. In: Hemodynamic Monitoring in the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-29430-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29430-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29429-2

  • Online ISBN: 978-3-319-29430-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics