Skip to main content
Log in

Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

In mechanically ventilated patients inspiratory increase in pleural pressure during lung inflation may produce complete or partial collapse of the superior vena cava. Occurrence of this collapse suggests that at this time external pressure exerted by the thoracic cavity on the superior vena cava is greater than the venous pressure required to maintain the vessel fully open. We tested the hypothesis that measurement of superior vena caval collapsibility would reveal the need for volume expansion in a given septic patient.

Design and setting

Prospective data collection for 66 successive patients in septic shock admitted in a medical intensive care unit and mechanically ventilated for an associated acute lung injury.

Measurements and results

We simultaneously measured superior vena caval collapsibility by echocardiography and cardiac index by the Doppler technique at baseline and after a 10 ml/kg volume expansion by 6% hydroxyethyl starch in 30 min. The threshold superior vena caval collapsibility of 36%, calculated as (maximum diameter on expiration−minimum diameter on inspiration)/maximum diameter on expiration, allowed discrimination between responders (defined by an increase in cardiac index of at least 11% induced by volume expansion) and nonresponders, with a sensitivity of 90% and a specificity of 100%.

Conclusions

Superior vena cava measurement should be systematically performed during routine echocardiography in septic shock as it gives an accurate index of fluid responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jardin F, Fourme T, Page B, Loubières Y, Vieillard-Baron A, Beauchet A, Bourdarias JP (1999) Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 116:1354–1359

    Article  CAS  PubMed  Google Scholar 

  2. Parker M Shelhamer J, Bacharach S, Gren M, Natanson C, Frederick T, Damske B, Parrillo J (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    CAS  PubMed  Google Scholar 

  3. Jardin F, Brun-Ney D, Auvert B, Beauchet A, Bourdarias JP (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–1060

    CAS  PubMed  Google Scholar 

  4. Parrillo J (1993) Pathogenic mechanism of septic shock. N Engl J Med 328:1471–1477

    Article  CAS  PubMed  Google Scholar 

  5. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine (1999) Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Crit Care Med 27:639–660

    PubMed  Google Scholar 

  6. Schneider A, Teule G, Groeneveld A, Nauta J, Heidendal G, Thijs L (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116:103–112

    Article  CAS  PubMed  Google Scholar 

  7. Krausz M, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann Surg 185:429–434

    CAS  PubMed  Google Scholar 

  8. Bendjelid K, Romand J (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360

    Article  PubMed  Google Scholar 

  9. Michard F, Boussat S, Chemla D Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky M, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    CAS  PubMed  Google Scholar 

  10. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone conditions on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    Article  CAS  PubMed  Google Scholar 

  11. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med 168:1270–1276

    Article  PubMed  Google Scholar 

  12. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    PubMed  Google Scholar 

  13. American-European Consensus Conference on ARDS (1994) Definition, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  Google Scholar 

  14. Darmon PL, Hillel Z, Mogtader A, Mindich B, Thys D (1994) Cardiac output by transesophageal echocardiography using continuous-wave Doppler across the aortic valve. Anesthesiology 80:796–805

    CAS  PubMed  Google Scholar 

  15. Vieillard-Baron A, Schmitt JM, Beauchet A, Augarde R, Prin S, Page B, Jardin F (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94:400–406

    Article  CAS  PubMed  Google Scholar 

  16. Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319

    Article  PubMed  Google Scholar 

  17. Fellahi JL, Jardin F (1999) Doppler echocardiography in intensive care. In: Webb A, Shapiro M, Singer M, Suter P (eds) Oxford textbook of critical care. Oxford University Press, Oxford, pp 1145–1153

  18. Kimchi A, Ellrodt G, Berman D, Riedinger M, Swan H, Murata G (1984) Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 5:945–951

    Google Scholar 

  19. Vincent JL, Reuse N, Frank N, Contempré B, Kahn R (1989) Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using thermodilution technique. Acta Anaesthesiol Scand 33:34–38

    CAS  PubMed  Google Scholar 

  20. Parker M, McCarthy K, Ognibene F, Parrillo J (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–131

    CAS  PubMed  Google Scholar 

  21. Morgan B, Martin W, Hornbein T, Crawford E, Guntheroth W (1966) Hemodynamic effect of intermittent positive pressure respiration. Anesthesiology 27:584–590

    CAS  PubMed  Google Scholar 

  22. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274

    CAS  PubMed  Google Scholar 

  23. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler Echocardiography. Am J Respir Crit Care Med 168:671–676

    Article  PubMed  Google Scholar 

  24. Versprille A (1990) The pulmonary circulation during mechanical ventilation. Acta Anaesthesiol Scand 34 [Suppl 94]:51–62

    Google Scholar 

  25. Vieillard-Baron A, Loubières Y, Schmitt JM, Page B, Dubourg O, Jardin F (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87:1644–1650

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Jardin.

Additional information

An editorial regarding this article can be found at http://dx.doi.org/10.1007/s00134-004.2362-x

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieillard-Baron, A., Chergui, K., Rabiller, A. et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30, 1734–1739 (2004). https://doi.org/10.1007/s00134-004-2361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2361-y

Keywords

Navigation