Skip to main content

Microbial Phytohormones Have a Key Role in Mitigating the Salt-Induced Damages in Plants

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Salinity is among the most challenging and devastating environmental problems which cause drastic decline in normal growth and developmental processes in crop plants. Plants have evolved several tolerance strategies to avert the damaging effects of high salinity. During the past few years most of the research is focused on increasing the salt tolerance of major food crops through the application of phytohormone producing beneficial microorganisms. During stress microbial phytohormones are having critical roles in modulating the physiology and biochemistry of plants so as to elicit a tolerance response to avoid stress. Induced plant growth and development of various plants by inoculation with PGPR having phytohormone, such as indole-3-acetic acid (IAA), cytokinins (CK), gibberelic acid (GA), salicylic acid (SA) and abscisic acid (ABA) producing ability, has been repeatedly documented. Present review discusses the role of phytohormones in ameliorating the salt stress-induced changes in plants and provides valuable insight into microbes evolved interactions with plant under hostile environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Basara SMA, Faooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8:23–28

    CAS  Google Scholar 

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 25–56

    Chapter  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56(5):575–588

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard (Brassica juncea (L.) Czern. & Coss.) plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2014) Potassium starvation induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Int 9(1):1–9

    CAS  Google Scholar 

  • Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10:2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  • Alqarawi AA, Hashem A, Abd-Allah EF, Alshahrani TS, Huqail AA (2014) Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata decne. Acta Biol Hung 65(1):61–71

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martineko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhances plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Ashraf MY, Sarwar G, Ashraf M, Afaf R, Sattar A (2002) Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Biol Plant 45:589–591

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3(14):253–264

    CAS  Google Scholar 

  • Bano A, Batool R, Dazzo F (2010) Adaptation of chickpea to desiccation stress is enhanced by symbiotic rhizobia. Symbiosis 50:129–133

    Article  CAS  Google Scholar 

  • Baumann K (2010) Signalling: ABA’s greatest hits. Nat Rev Mol Cell Biol 11(1):2

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: de Bruijn Frans J (ed) Molecular microbial ecology of the rhizosphere. Wiley, USA

    Google Scholar 

  • Boucaud J, Ungar IA (1976) Hormonal control of germination under saline conditions of three halophyte taxa in genus Suaeda. Physiol Plant 36:197–200

    Article  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Buran TJ, Sandhu AK, Azeredo AM, Bent AH, Williamson JG, Gu L (2012) Effects of exogenous abscisic acid on fruit quality, antioxidant capacities, and phytochemical contents of southern high bush blueberries. Food Chem 132:1375–1381

    Article  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Abscisic acid decreases leaf Na + exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    Article  CAS  Google Scholar 

  • Cramer GR, Quarrie SA (2002) Abscsic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Funct Plant Biol 29:111–115

    Article  CAS  Google Scholar 

  • Creus DM, Sueldo RJ, Rolando J, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect du NaCl et de regulatoeurs de croissance sur la germination d’ Atriplex halimus L. Cahiers Agric 10:135–138

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dunlap JR, Binzel ML (1996) NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress induced abscisic acid. Plant Physiol 112:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Botir H, Hashem A, Abd_Allah EF (2014) Characterization of salt tolerant Enterobacter hormaechei strain associated with tomato root grown in arid saline soil. Pure Appl Microbiol 8(5):4231–4239

    CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root colonising Pseudomonas. Plant Soil 369(1):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012) Pseudomonas chlororaphis: a salt tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinatedsoils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:561–573

    Article  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D (2008) Alleviation of salinity stress in radishes with phytohormone producing rhizobacteria. Biotechnol J 136S:262

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 19:1–19

    Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan. Sci World J 5:501–509

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003) The effect of associative bacteria from different climates on plant growth of pea at different soils and temperatures. Arch Agr Soil Sci 49(2):203–213

    Article  Google Scholar 

  • Fassler E, Evangeloua MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martınez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 4:182–188

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61(6):485–493

    Article  CAS  PubMed  Google Scholar 

  • Frebort I, Kowalsk M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62(8):2431–2452

    Article  CAS  PubMed  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34:1305–1309

    CAS  Google Scholar 

  • Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2002) Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Reg 21(3):234–240

    Article  Google Scholar 

  • Gulnaz AJ, Iqbal J, Azam F (1999) Seed treatment with growth regulators and crop productivity. II. Response of critical growth stages of wheat (Triticum aestivum L.) under salinity stress. Cereal Res 27:419–426

    CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslam M, Erslan F, Bagsi EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maiz (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology 56: 327–333

    Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pak J Biol Sci 10:910–914

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Peuke AD, Pate JS, Hartung W (1997) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48:1737–1747

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    Article  CAS  Google Scholar 

  • Kang NY, Cho C, Kim NY, Kim J (2012) Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. J Plant Physiol 169:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoğlu SF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22(10):1061–1064

    Article  CAS  Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim Yoon-Ha, Kang SM, Lee JH, Lee IN (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, iso flavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch K (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kuiper D, Schuit J, Kuiper PJC (1990) Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil 123:243–250

    Article  CAS  Google Scholar 

  • Kunikowska A, Byczkowska A, Doniak M, Kazmierczak A (2013) Cytokinins resume: their signaling and role in programmed cell death in plants. Plant Cell Rep 32:771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavania M, Nautiyal CS (2013) Solubilization of tricalcium phosphate by temperature and salt tolerant Serratia marcescens NBRI1213 isolated from alkaline soils. Afr J Microbiol Res 7(34):4403–4413

    Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Microbiol Biotechnol 97(20):9155–9164

    Article  CAS  Google Scholar 

  • Lubovska Z, Dobra J, Storchova H, Wilhelmova N, Vankova R (2014) Cytokinin oxidase/dehydrogenase over expression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J Plant Physiol 171:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–71

    CAS  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Manjili FA, Sedghi M, Pessarakli M (2012) Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nut 35:1098–1111

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotech 8(21):5762–5766

    Article  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling, biosynthesis, catabolism, and response pathways. Plant Cell 14:561–580

    Google Scholar 

  • Prakash L, Prathapasenan G (1990) NaCl and gibberellic acid induced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice (Oryza sativa). Ann Bot 365:251–257

    Article  Google Scholar 

  • Raza A, Faisal M (2013) Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan. Austr J Crop Sci 7(11):1693–1698

    Google Scholar 

  • Ribaut JM, Pilet PE (1994) Water stress and indole-3ylacetic acid content of maize roots. Planta 193:502–507

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Google Scholar 

  • Salamone DG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Senaratna T, Touchell D, Bunns E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg 30:157–161

    Article  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in vitro cultured grapevine. Physiol Plant 51(4):359–374

    Article  Google Scholar 

  • Shanmugam P, Narayanasamy M (2008) Optimization and production of salicylic acid by rhizobacterial strain Bacillus licheniformis MML2501. Internet J Microbiol 6:1

    Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Florencia M, Papa D, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Tasgin E, Attici O, Nalbantogly B (2003) Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Reg 41:231–236

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tilak KVB, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Expt Bot 63:1–9

    Article  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Gneş A, Karagz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333

    Article  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasentein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Yu J (2012) Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. J Am Soc Hortic Sci 137(2):96–106

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

Download references

Acknowledgments

The research activity of Dilfuza Egamberdieva was supported by a Georg Forster Research Fellowship for experienced Researchers (HERMES), Alexander Von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egamberdieva, D., Hashem, A., Alqarawi, A.A. (2015). Microbial Phytohormones Have a Key Role in Mitigating the Salt-Induced Damages in Plants. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_10

Download citation

Publish with us

Policies and ethics