Skip to main content

Drought Tolerance: Role of Organic Osmolytes, Growth Regulators, and Mineral Nutrients

  • Chapter
  • First Online:
Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment

Abstract

Plants are continuously exposed to various environmental stresses, which cause alteration in every physiological and biochemical pathway. Plants have evolved several mechanisms that allow a plant species to tolerate/combat stress. Greater synthesis and accumulation of compatible organic osmolytes and proper mineral nutrition help plants to bring osmoregulation so that the cell water content and turgor is maintained. Under stress conditions, synthesis and accumulation of several osmolytes like free sugars, amino compounds, such as proline and glycine betaine, sugar alcohols like mannitol, and other low molecular weight metabolites are increased. Macro mineral elements such as nitrogen, phosphorus, potassium, and calcium are required for normal growth and development of plants and are known to stimulate the synthesis of osmotically active solutes. Moreover, they are actively implicated in several physiological processes including enzyme activation, transport, photosynthesis, and protein synthesis. Various phytohormones are known to have defensive roles in plants exposed to environmental stresses and their synthesis and accumulation are upregulated on exposure to environmental stress. Present review throws light on the role of organic osmolytes, mineral nutrients, and also growth regulators especially abscisic acid, ethylene, and salicylic acid in increasing the plant tolerance to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Basset R (1998) Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium. Acta Physiol Plant 2(2):149–153

    Google Scholar 

  • Abou El-Yazied AA (2011) Foliar application of glycine betaine and chelated calcium improves seed production and quality of common bean (Phaseolus Vulgaris L.) under water stress conditions. Res J Agric Biol Sci 7:357–370

    CAS  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Meena RC (2005) Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant 49:541–550

    CAS  Google Scholar 

  • Agarwal RM, Tomar NS, Singh K, Sharma GL (2009) Potassium induced changes in flowering plants. In: Flower retrospect and prospect (Professor Vishwambhar Puri Birth Centenary Volume). SR Scientific Publication, Delhi, pp 158–186

    Google Scholar 

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    CAS  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56(5):575–588

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54(3):89–99

    Google Scholar 

  • Ahmad P, Jhon R, Sarwat M, Umar S (2008a) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Prod 2(4):353–366

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008b) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium induced oxidative damage in mustard (Brassica juncea L. Czern. and Coss.) plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012a) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fresen Environ Bull 21(10):2953–2961

    CAS  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012b) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Hakeem KR, Azooz MM, Sharma S (2012c) Polyamines: role in plants under abiotic stress. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht, pp 491–512

    Google Scholar 

  • Ahmad P, Bhardwaj R, Tuteja T (2012d) Plant signaling under abiotic stress environment. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 297–323

    Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2013) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact (in press). doi:10.1080/17429145.2012.747629

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    CAS  PubMed  Google Scholar 

  • Alcazar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38

    CAS  PubMed  Google Scholar 

  • Aldesuquy HS, Abbas MA, Abo-Hamed SA, Elhakem AH, Alsokari SS (2012) Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress. J Stress Physiol Biochem 8(2):72–89

    Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali Q, Ashraf M (2011) Exogenously applied glycine betaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ Exp Bot 71:249–259

    CAS  Google Scholar 

  • Alia SA, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    PubMed  Google Scholar 

  • Allen GA, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    CAS  PubMed  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    CAS  PubMed  Google Scholar 

  • Anand A, Trick HN, Gill BS (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J 1(4):241–251

    CAS  PubMed  Google Scholar 

  • Ananieva EA, Christov KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J Plant Physiol 161:319–328

    CAS  PubMed  Google Scholar 

  • Anjum SA, Saleem MF, Wang L, Bilal MF, Saeed A (2012) Protective role of glycine betaine in maize against drought induced lipid peroxidation by enhancing capacity of antioxidative system. Aust J Crop Sci 6(4):576–583

    CAS  Google Scholar 

  • Arbona V, Hossain Z, Lopez-Climent MF, Perez Clemente RM, Gomez Cadenas A (2008) Antioxidant enzymatic activity is linked to water logging stress tolerance in citrus. Physiol Plant 132:452–466

    CAS  PubMed  Google Scholar 

  • Armengaud P (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    CAS  PubMed  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Audran C, Liotenberg S, Gonneau M, North H, Frey A (2001) Localization and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Aust J Plant Physiol 28:1161–1173

    CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3(14):253–264

    CAS  Google Scholar 

  • Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahrani MJ, Bahrami H, Haghighi AAK (2010) Effect of water stress on ten forage grasses native or introduced to Iran. Grassl Sci 56:1–5

    Google Scholar 

  • Barkosky RR, Einhellig FA (1993) Effects of salicylic acid on plant water relationship. J Chem Ecol 19:237–347

    CAS  PubMed  Google Scholar 

  • Batlang U, Baisakh N, Ambavaram MM, Pereira A (2013) Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods Mol Biol 956:209–225

    PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    CAS  PubMed  Google Scholar 

  • Blum A (1996) Crop response to drought and the interpretation of adaptation. J Plant Growth Regul 20:135–148

    CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use deficiency, and yield potential—are they compatible, dissonant, or mutually exclusive. Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Praveen VK, Chattopathy D (2004) Long term transcript accumulation during development of dehydration adaptation in Cicer arietinum. Plant Physiol 135:1608–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. J Plant Physiol 126:1024–1030

    CAS  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    CAS  PubMed  Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    CAS  PubMed  Google Scholar 

  • Burkhanova EA, Fedina AB, Kulaeva ON (1999) Effect of salicylic acid and (2-5)-oligo-adenylates on protein synthesis in tobacco leaves under heat shock conditions: a comparative study. Russ J Plant Physiol 46:16–22

    Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    CAS  Google Scholar 

  • Cabot C, Sibole Barcelo JV, Poschenrieder C (2009) Sodium-calcium interactions with growth, water, and photosynthetic parameters in salt treated beans. J Plant Nutr Soil Sci 172:637–643

    CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    CAS  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2 and eto3 mutations and cytokinin treatment elevate ethylene biosynthesis in Arabidopsis by increasing the stability of the ACS5 protein. Plant Cell 15:545–559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    CAS  PubMed  Google Scholar 

  • Chaves HM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plants. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey M, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    CAS  PubMed  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BK, Lee SC, Kudia J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK 23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    CAS  PubMed  Google Scholar 

  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29:159–165

    CAS  PubMed  Google Scholar 

  • Chuang HW, Harnrak A, Chen YC, Hsu CM (2010) A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochem Biophys Res Commun 402:414–420

    CAS  PubMed  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Da Costa M, Huang B (2009) Physiological adaptations of perennial grasses to drought stress. In: Barrera ED, Smith WK (eds) Perspectives in biophysical plant ecophysiology. Universidad National Autonoma de Mexico, Mexico, pp 169–190. ISBN 987-0-578-00421-1

    Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11:2–13

    CAS  PubMed  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid and heat acclimation of mustard seedlings. Plant Physiol 116:1351–1357

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Carvalho K, de Campos MK, Domingues DS, Pereira LF, Vieira LG (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40(4):3269–3279

    CAS  PubMed  Google Scholar 

  • Desikan R, Hanckok JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, Gaudinova A, Havlova M, Gubis J, Vankova R (2010) Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. J Plant Physiol 167:1360–1370

    CAS  PubMed  Google Scholar 

  • Duan JJ, Li J, Guo SR, Kang YY (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short term salinity tolerance. J Plant Physiol 165:1620–1635

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice Oryza sativa L., encode transcription activators that function in drought, high salt and cold responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Easterwood GW (2002) Calcium’s role in plant nutrition. Fluid J 1:1–3

    Google Scholar 

  • Ebelhar SA, Varsa EC (2000) Tillage and potassium placement effects on potassium utilization by corn and soybean. Commun Soil Sci Plant Anal 31:11–14

    Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    CAS  PubMed  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland, p 400

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420

    CAS  PubMed  Google Scholar 

  • FAO (2010) FAO land and plant nutrition management service. http://www.fao.org

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108:1717–1722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girija C, Smith BN, Swamy PM (2002) Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycine betaine in peanut (Arachis hypogaea L). Environ Exp Bot 47:1–10

    CAS  Google Scholar 

  • Gomez-Cadena A, Tadeo FR, Primmo-Millo ME (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408

    Google Scholar 

  • Gowing DJ, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple (Malus domestica Bork). Exp Bot 41:1535–1540

    Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    CAS  PubMed  Google Scholar 

  • Gupta SC, Rathore AK, Sharma SN, Saini RS (2000) Response of chickpea cultivar to water stress. Indian J Plant Physiol 3:274–276

    Google Scholar 

  • Hall MA, Smith AR (1995) Ethylene and the responses of plants to stress. Bulg J Plant 165:397–406

    Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    CAS  PubMed  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27–32

    CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    CAS  PubMed  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt stressed rapid cycling Brassica species. Plant Soil 179:25–33

    CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    CAS  Google Scholar 

  • Hu Y, Zhao L, Chong K, Wang T (2008) Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression, besides affects growth and development in Arabidopsis. J Plant Physiol 165:1717–1725

    CAS  PubMed  Google Scholar 

  • Huang ZJ, Zhang ZJ, Zhang XL, Zhang HB, Huang DF (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573:110–116

    CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:337–403

    Google Scholar 

  • Iqbal N, Ashraf MY, Ashraf M (2005) Influence of water stress and exogenous glycine betaine on sunflower achene weight and oil percentage. Int J Environ Sci Technol 2:155–160

    CAS  Google Scholar 

  • Jackson GE, Irvine J, Grace J, Khalil AAM (1995) Abscisic acid concentrations and fluxes in droughted conifer saplings. Plant Cell Environ 18:13–22

    CAS  Google Scholar 

  • Jajarmi V (2009) Effect of water stress on germination indices in seven wheat cultivar. World Acad Sci Eng Technol 49:105–106

    Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Kishorekumar A, Sankar B, Panneerselvam R (2006) Paclobutrazol influences vegetative growth and floral characteristics of Catharanthus roseus (L) G. Don. Indian J Appl Pure Biol 21:369–372

    Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R (2007) Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot 77:190–195

    Google Scholar 

  • Janda T, Szalai G, Tari T, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L) plants. Planta 208:175–180

    CAS  Google Scholar 

  • Jarvis AJ, Davies WJ (1997) Whole plant ABA flux and the regulation of water loss in Cedrella odorata. Plant Cell Environ 20:521–527

    CAS  Google Scholar 

  • Jatav KS, Agarwal RM, Singh RP, Shrivastava M (2012) Growth and yield responses of wheat (Triticum aestivum L.) to suboptimal water supply and different potassium doses. J Funct Environ Bot 2(1):39–51

    Google Scholar 

  • Jeschke WD, Kirkby EA, Peuke AD, Pate JS, Hartung W (1997) Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor oil bean (Ricinus communis L). J Exp Bot 48:75–91

    CAS  Google Scholar 

  • Jia W, Zhang J (1999) Stomatal closure is induced rather by prevailing xylem abscisic acid than by accumulated amount of xylem derived abscisic acid. Physiol Plant 106:268–275

    CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress induced abscisic acid accumulation triggers the increased generation of reactive species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    CAS  PubMed  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2010) Insight into role of exogenous salicylic acid on plants growth under salt environment. Asian J Crop Sci 2(4):226–235

    Google Scholar 

  • Ju HW, Min JH, Chung MS, Kim CS (2013) The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis. Plant Sci 203–204:1–7

    PubMed  Google Scholar 

  • Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 91:607–621

    Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Tuba A (2010) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Google Scholar 

  • Kant S, Kafkafi U (2002) Potassium and abiotic stresses in plants. In: Pasricha NS, Bansal SK (eds) Potassium for sustainable crop production. Potash Institute of India, Gurgaon, pp 233–251

    Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    CAS  PubMed  Google Scholar 

  • Katare DP, Nabi G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2(1):65–74

    Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycine betaine induced water stress tolerance in codA-expressing transgenic rice is associated with up regulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    CAS  PubMed  Google Scholar 

  • Kaydan D, Yagmur M, Okut N (2007) Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L). Tarim Bilimleri Dergisi 13(2):114–119

    Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Khamssi NN, Golezani KG, Najaphy A, Zehtab S (2011) Evaluation of grain filling rate, effective grain filling period and resistance indices under acclimation to gradual water deficit stress in chickpea cultivars. Aust J Crop Sci 5:1044–1049

    Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell type specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    CAS  PubMed  Google Scholar 

  • Kim GB, Nam YW (2013) Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170(3):291–302

    CAS  PubMed  Google Scholar 

  • Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) Activation of a stress responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    CAS  PubMed  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Different effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    CAS  PubMed  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Kubis J (2008) Exogenous spermidine differently alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water stressed cucumber leaves. J Plant Physiol 165:397–406

    CAS  PubMed  Google Scholar 

  • Kumriaa R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159(9):983–990

    Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research. J Plant Res 120:345–350

    CAS  PubMed  Google Scholar 

  • Le Rudulier D, Strom AR, Danekar AM, Smith LT, Valentaine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Liu HH, Dong BH, Zhang YY, Liu ZP, Liu YL (2004) Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci 166:1261–1267

    CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Liu JH, Inoue H, Moriguchi T (2008) Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ Exp Bot 62:28–35

    CAS  Google Scholar 

  • Liu L, Hu X, Song J, Zong X, Li D (2009) Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol 166:531–542

    CAS  PubMed  Google Scholar 

  • Luan S (2002) Signaling drought in guard cells. Plant Cell Environ 25:229–237

    CAS  PubMed  Google Scholar 

  • Lutts S (2000) Exogenous glycine betaine reduces sodium accumulation in salt stressed rice plants. Int Rice Res Notes 25:39–40

    Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycine betaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    CAS  Google Scholar 

  • Ma YY, Song WY, Liu ZH, Zhang HM, Guo XL, Shao HB, Ni FT (2009) The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. Cell Biol 332:35–362

    Google Scholar 

  • Makela P, Jokinen K, Kontturi M, Peltonen Sainio P, Pehu E, Somersalo S (1998) Foliar application of glycine betaine—a novel product from sugar beet, as an approach to increase tomato yield. Ind Crops Prod 7:139–148

    CAS  Google Scholar 

  • Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL (2006) Cross talk between ethylene and drought signaling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J 48:125–137

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Masoumi A, Kafi M, Hamidreza Khazaei H, Davari K (2010) Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidant of kochia (Kochia scoparia) under saline condition. Pak J Bot 42(5):3517–3524

    Google Scholar 

  • McAnish MR, Hetherington AM (1998) Encoding specificity in Ca2+ signaling systems. Trends Plant Sci 3:32–36

    Google Scholar 

  • Meille JL, Pellerin S (2004) Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265:75–92

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic, Dordrecht, p 849

    Google Scholar 

  • Metraux JP (2001) Systemic acquired resistance and salicylic acid: current state of knowledge. Eur J Plant Pathol 107:13–18

    CAS  Google Scholar 

  • Metwally A, Finkmemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G (2000) Osmotic stress induces rapid activation of a salicylic acid induced protein kinase and a homolog of protein kinase ASK1 in tobacco cell. Plant Cell 12:165–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    CAS  PubMed  Google Scholar 

  • Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54–62

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycine betaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189

    CAS  PubMed  Google Scholar 

  • Murkowski A (2001) Heat stress and spermidine: effect on chlorophyll fluorescence in tomato plants. Biol Plant 44:53–57

    CAS  Google Scholar 

  • Nandwal AS, Hooda A, Datta D (1998) Effect of substrate moisture and potassium on water relations and C, N and K distribution in Vigna radiata. Biol Plant 41:149–153

    Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    CAS  Google Scholar 

  • Nayyar H, Walia DP (2004) Genotypic variation in wheat in response to water stress and abscisic acid-induced accumulation of osmolytes in developing grains. J Agron Crop Sci 190:39–45

    CAS  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 1:39–47

    Google Scholar 

  • Nobuhiro S, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Google Scholar 

  • Nye GJ, Scott P, Golbeck H, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    PubMed Central  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    CAS  PubMed  Google Scholar 

  • Pandey R, Agarwal RM (1998) Water stress-induced changes in proline contents and nitrate reductase activity in rice under light and dark conditions. Physiol Mol Biol Plants 4:53–57

    Google Scholar 

  • Pandey R, Agarwal RM, Jeevaratnam K, Sharma GL (2004) Osmotic stress induced alterations in rice (Oryza sativa L.) and recovery. Plant Growth Regul 42:79–87

    CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252

    CAS  PubMed  Google Scholar 

  • Patil S, Takezawa D, Poovaiah BW (1995) Chimeric plant calcium: calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci U S A 92:4897–4901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Pettigrew WT, Meredith WR (1997) Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr 20:531–548

    CAS  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travnickova A, Batkova P (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plant 49:533–540

    CAS  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple stresses and fungal resistance. Plant Biotechnol 24:273–282

    CAS  Google Scholar 

  • Premachandra GS, Saneoka H, Ogata S (1991) Cell membrane stability and leaf water relations as affected by potassium nutrition of water stressed maize. J Exp Bot 42:45–73

    Google Scholar 

  • Pugnaire FI, Endolz LS, Pardos J (1994) Constraints by water stress on plant growth. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 247–259

    Google Scholar 

  • Qin XQ, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 96:15354–15361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qu LJ, Wu LQ, Fan ZM, Guo L, Li YQ, Chen ZL (2005) Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168:297–302

    Google Scholar 

  • Rahman MS, Miyake H, Takeoka Y (2002) Effects of exogenous glycine betaine on growth and ultra structure of salt-stressed rice seedlings (Oryza sativa L.). Plant Prod Sci 5:33–44

    CAS  Google Scholar 

  • Rai VK, Sharma SS, Sharma S (1986) Reversal of ABA induced stomatal closure by phenolic compounds. J Exp Bot 37:129–134

    CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt affected soils. Funct Plant Biol 37:613–620

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    CAS  Google Scholar 

  • Ruiz-Sanchez MC, Domingo R, Perez-Pastor A (2007) Daily variations in water relations of apricot trees under different irrigation regimes. Biol Plant 51:735–740

    Google Scholar 

  • Sadeghipour O, Aghaei P (2012) Impact of exogenous salicylic acid application on some traits of common bean (Phaseolus vulgaris L.) under water stress conditions. Int J Agric Crop Sci 4(11):685–690

    CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of single calcium dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 28(3):319–327

    Google Scholar 

  • Sajid SA, Aftab F (2012) Role of salicylic acid in amelioration of salt tolerance in potato (Solanum tuberosum L.) under in vitro conditions. Pak J Bot 44:37–42

    CAS  Google Scholar 

  • Sakhanokho HF, Kelley RY (2009) Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv Luna Red). Afr J Biotechnol 8(8):1474–1481

    CAS  Google Scholar 

  • Sangakkara UR, Hartwig UA, Nosberger J (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184:123–130

    CAS  Google Scholar 

  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca2+ signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 33(1):97–109

    CAS  PubMed  Google Scholar 

  • Scaramagli S, Biondi S, Leone A, Grub S, Torrigiani P (2000) Acclimation to low-water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiol Biochem 38:345–351

    CAS  Google Scholar 

  • Schaberg PG, Minocha R, Long S, Halman JM, Hawley GJ, Eagar C (2011) Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season. Trees 25:1053–1061

    CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    CAS  PubMed  Google Scholar 

  • Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat, role of potassium status and irrigation history. Plant Physiol 89:1358–1365

    Google Scholar 

  • Shabala S, Schimanski LJ, Koutoulis A (2002) Heterogeneity in bean leaf mesophyll tissue and ion flux profiles: leaf electrophysiological characteristics correlate with the anatomical structure. Ann Bot 89:221–226

    PubMed  Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in the manifestation of growth promoting and anti-stress action of salicylic acid. In: Hayat S, Ahmad A (eds) Salicylic acid, a plant hormone. Springer, Dordrecht, p 69

    Google Scholar 

  • Shakirova FM, Bezrukova MV (1997) Induction of wheat resistance against environmental salinization by salicylic acid. Biol Bull 24:109–112

    Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Shao HB, Chen XY, Chu LY, Zhao XN, Wu GY, Yong B (2006) Investigation on the relationship of proline with wheat anti drought under soil water deficits. Colloids Surf B Biointerfaces 53:113–119

    CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA (2008a) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30:634–641

    CAS  Google Scholar 

  • Shao HB, Song WY, Chu LY (2008b) Advances of calcium signals involved in plant anti-drought. C R Biol 331:587–596

    CAS  PubMed  Google Scholar 

  • Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana, the role of salicylic acid in the accumulation of defense related transcripts and induced resistance. Proc Natl Acad Sci U S A 93:5099–5104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp RE, Le Noble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    CAS  PubMed  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shou H, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004a) Expression of an active tobacco mitogen-activated protein kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A 101:3298–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004b) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    CAS  PubMed  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201–202:137–146

    PubMed  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39(2):137–141

    CAS  Google Scholar 

  • Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C (2011) Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol 10(72):16250–16259

    CAS  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, Del-Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Spollen WG, Le Noble ME, Sammuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subbarao GV, Wheeler RM, Levine LH, Stutte GW (2001) Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. J Plant Physiol 158:767–776

    CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Szalai G, Horgosi S, Soos V, Majlath I, Balazs E, Janda T (2010) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168:213–219

    PubMed  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 3rd edn. Panima Publishing Corporation, New Delhi, pp 528–529

    Google Scholar 

  • Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K (2000) An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol 41:898–903

    CAS  PubMed  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits the abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tari I, Csiszar J, Szalai G, Horvath F, Pecsvaradi A, Kiss G, Szepesi A, Szabo M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szeged 46:55–56

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and trbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umar S, Rao NR, Sekhon GS (1993) Differential effects of moisture stress and potassium levels on growth and K uptake in sorghum. Indian J Plant Physiol 36(2):94–97

    Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839

    CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+ dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet 244:331–340

    CAS  PubMed  Google Scholar 

  • Valero D, Perez-Vicente A, Martinez-Romero D, Castillo S, Guillen F, Plum SM (2002) Storability improved after calcium and heat postharvest treatments: role of polyamines. J Food Sci 67:2571–2575

    CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  PubMed  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    CAS  PubMed  Google Scholar 

  • Walker CR, Black JA, Miller J (1998) The role of cytosolic potassium and pH in the growth of barley roots. Plant Physiol 118:957–964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hortic Sci Biotechnol 75:623–627

    CAS  Google Scholar 

  • Wang Y, Wu WH (2010) Plant sensing and signaling in response to K+ deficiency. Mol Plant 3:280–287

    CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070

    CAS  PubMed  Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010) Over accumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waseem M, Athar H, Ashraf M (2006) Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak J Bot 38(4):1127–1136

    Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    CAS  PubMed  Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs, vol 17. Springer, Berlin, pp 199–224

    Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    CAS  PubMed  Google Scholar 

  • Wild A (2003) Soils, land and food: managing the land during the twenty-first century. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well watered plants. Plant Physiol 117:703–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J, Liu MY, Jia SF (2005) Water security problem in North China: research and perspective. Pedosphere J 15:563–575

    Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid inducible mitogen activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    CAS  PubMed  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano TA (2007) Protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine betaine in salt stressed maize. Physiol Plant 124:343–352

    CAS  Google Scholar 

  • Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycine betaine in sorghum. Crop Sci 43:162–169

    CAS  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    CAS  PubMed  Google Scholar 

  • Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ (2009) Exogenous putrescine reduces flooding induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic 120:306–314

    CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    CAS  PubMed  Google Scholar 

  • Yoo JH, Park CY, Kim JC (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsone V (2000) Plant response to drought, acclimatation and stress tolerance. Photosynthetica 30:171–186

    Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50(9):1096–1102

    CAS  PubMed  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    CAS  PubMed  Google Scholar 

  • Zeid IM, Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50:635–640

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1989a) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1989b) Sequential responses of whole plant water relations towards prolonged soil drying and the mediation by xylem sap ABA concentrations in the regulation of stomatal behaviour of sunflower plants. New Phytol 113:167–174

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1990a) Changes in the concentration of ABA in xylem sap as a function of changing soil water status will account for changes in leaf conductance. Plant Cell Environ 13:277–285

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1990b) Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants. J Exp Bot 41:1125–1132

    CAS  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in roots. J Exp Bot 38:1174–1181

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    CAS  PubMed  Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818

    CAS  PubMed  Google Scholar 

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    CAS  PubMed  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hortic 116:442–447

    CAS  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ 26:275–283

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 53:247–273

    CAS  Google Scholar 

  • Zlatev Z, Stotanov Z (2005) Effect of water stress on leaf water relations of young bean plants. J Cent Eur Agric 6(1):5–14

    Google Scholar 

  • Zwart FJ, Slow S, Payne RJ, Lever M, George PM, Gerrard JA, Chambers ST (2003) Glycine betaine and glycine betaine analogues in common foods. Food Chem 83:197–204

    Google Scholar 

Download references

Acknowledgment

We are highly thankful to Prof R. M. Agarwal for his valuable suggestions and Prof. Rekha Bhadauria, Head, School of Studies in Botany, Jiwaji University, Gwalior for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abass Ahanger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahanger, M.A., Tyagi, S.R., Wani, M.R., Ahmad, P. (2014). Drought Tolerance: Role of Organic Osmolytes, Growth Regulators, and Mineral Nutrients. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_2

Download citation

Publish with us

Policies and ethics