Skip to main content
Log in

Alleviation of Salt Stress in Common Bean (Phaseolus vulgaris) by Exogenous Abscisic Acid Supply

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In this work the effect of abscisic acid (ABA) and 100 mM NaCl on common bean (Phaseolus vulgaris var. Coco) growth, nitrogenase activity, and nodule metabolism was studied. Experiments were carried out in a controlled environmental chamber and plants, at the vegetative growth stage (16 days old), were treated with ABA (1 μM and 10 μM) and 48 h later were exposed to saline treatment. Results revealed that plant dry weight, nodule dry weight, nitrogen fixation (acetylene reduction activity and ureides content), and most enzymes of ammonium and ureides metabolism were affected by both ABA and NaCl. The addition of 1 μM ABA to the nutrient solution before the exposure to salt stress reduced the negative effect of NaCl. Based on our results, we suggest that ABA application improves the response of Phaseolus vulgaris symbiosis under saline stress conditions, including the nitrogen fixation process and enzymes of ammonium assimilation and purine catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A. 1990. Exogenous ABA as a modulator of the response of Sorghum to high salinity. J Exp Bot 41:1529–1534

    CAS  Google Scholar 

  • Aspinall D, Paleg LG. 1981. Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds). The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney, Australia, pp. 215–228

    Google Scholar 

  • Atkins CA. 1991. Ammonia assimilation and export of nitrogen from the legume nodule: In: Dilworth M, Glenn A (eds). Biology and Biochemistry of Nitrogen Fixation. Elsevier Science, Amsterdam, the Netherlands, pp. 293–319

    Google Scholar 

  • Bano A, Hillman JR. 1986. Effect of abscisic acid on nodule morphology, nitrogenase activity and H2 evolution in Faba vulgaris. Ann Bot 58:281–283

    CAS  Google Scholar 

  • Bekki A, Trinchant JC, Rigaud J. 1987. Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71:61–67

    Article  CAS  Google Scholar 

  • Caba JM, Lluch C, Hervás A, Ligero F. 1990. Nitrate metabolism in roots and nodules of Vicia faba in response to exogenous nitrate. Physiol Plant 79:531–539

    Article  CAS  Google Scholar 

  • Chanda SV, Sood CR, Reddy VS, Singh YD. 1998. Influence of plant growth regulators on some enzymes of nitrogen assimilation in mustard seedling. J Plant Nutr 21:1765–1777

    CAS  Google Scholar 

  • Chen CCS, Plant AL. 1999. Salt-induced protein synthesis in tomato roots: the role of ABA. J Exp Bot 50:677–687

    Article  CAS  Google Scholar 

  • Chen THH, Gusta LV. 1983. Abscisic acid-inducing freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    PubMed  CAS  Google Scholar 

  • Chopra J, Kaur N, Gupta AK. 2003. The role of ammonium assimilating enzymes in lentil roots and nodules. Biol Plant 47:105–109

    Article  CAS  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C. 1994. The effect of salinity on N2 fixation and assimilation in Vicia faba. J Exp Bot 45:1483–1488

    CAS  Google Scholar 

  • Cordovilla MP, Ocaña A, Ligero F, Lluch C. 1996. Growth and symbiotic performance of fava bean inoculated with Rhizobium leguminosarum biovar viciae strains tolerant to salt. Soil Sci Plant Nutr 42:133–140

    CAS  Google Scholar 

  • Cullimore JV, Bennett MJ. 1988. The molecular biology and biochemistry of plant glutamine synthetase from root nodules of Phaseolus vulgaris L. and other legumes. Plant Physiol 132:387–393

    CAS  Google Scholar 

  • Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Delgado MJ, Garrido JM, Ligero F, Lluch C. 1993. Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol Plant 89:824–29

    Article  CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C. 1994. Effect of salt stress on growth and nitrogen fixation by pea, fava-bean, common bean, and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Downton WJS, Loveys BR. 1981. Abscisic acid content and osmotic relation of salt stressed grapevine leaves. Aust J Plant Physiol 8:443–452

    Article  CAS  Google Scholar 

  • Elsheikh EAE, Wood M. 1990. Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). J Exp Bot 41:1263–1269

    CAS  Google Scholar 

  • Fedina IS, Tsonev TD, Guleva EI. 1994. ABA as a modulator of the response of Pisum sativum to salt stress. J Plant Physiol 143:245–249

    CAS  Google Scholar 

  • Gómez-Cardenas A, Arbona V, Jacas J, Primo-Millo E, Talon M. 2003. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Article  CAS  Google Scholar 

  • González EM, Galvez L, Arrese-Igor C. 2001. Abscisic acid induces a decline in nitrogen fixation that involves leghemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293

    Article  PubMed  Google Scholar 

  • González EM, Gordon AJ, James CL, Arrese-Igor C. 1995. The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46:1515–1523

    Google Scholar 

  • Groat RG, Vance CP. 1981. Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.). Plant Physiol 67:1198–1203

    PubMed  CAS  Google Scholar 

  • Hardy RWF, Burn RC, Holstein RD. 1973. Application of C2H2-C2H4 assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • He T, Cramer GR. 1996. Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179:25–33

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH. 2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sánchez-Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugar in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Kaiser JJ, Lewis OAH. 1984. Nitrate reductase and glutamine synthetase activity in leaves and roots of nitrate-fed Helianthus annuus L. Plant Soil 70:127–130

    Article  Google Scholar 

  • Khadri M, Pliego L, Soussi M, Ocana A. 2001. Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress. Agronomie 21:635–643

    Article  Google Scholar 

  • Kohl DH, Straub KR, Shearer G. 1994. Does proline play a special role in bacteroid metabolism? Plant Cell Environ 17:1257–1262

    Article  CAS  Google Scholar 

  • La Rosa DC, Hasegawa D, Rhodes D, Clithero MJ, Watad AEA, Bressan RA. 1987. Abscisic acid stimulated osmotic adjustment and involvement in adaptation of tobacco cells to NaCl. Plant Physiol 85:174–181

    CAS  Google Scholar 

  • Ligero F, Lluch C, Olivares J. 1986. Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. J Plant Physiol 125:361–365

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AC, Randall RJ. 1951. Protein measurement with the Folin-Cicolteau reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Muller M. 1983. A major error in the acetylene reduction assay: decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    CAS  Google Scholar 

  • Montero E, Cabot C, Poschenrieder C, Barceló J. 1998. Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ 21:54–62

    Article  CAS  Google Scholar 

  • Moons A, Gielen J, Vanderkerckhove J, Van Der Straeten D, Gheysen G, Van Montagu M. 1997. An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202:443–454

    Article  PubMed  CAS  Google Scholar 

  • Pessarakli M, Huber TJ, Tucker TC. 1989. Dry matter yield, nitrogen absorption and water uptake by sweet corn under salt stress. J Plant Nutr 12:279–290

    Google Scholar 

  • Rigaud J, Puppo A. 1975. Indole-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 88:223–228

    Google Scholar 

  • Savouré A, Hua XJ, Bertauche N, van Montagu M, Verbruggen N. 1997. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses. Mol Gen Genet 254:104–109

    Article  PubMed  Google Scholar 

  • Sawhney V, Saharan MR, Singh R. 1987. Nitrogen fixing efficiency and enzymes of CO2 assimilation in nodules of ureides and amide producing legumes. J Plant Physiol 129:201–210

    CAS  Google Scholar 

  • Schubert KR 1981. Enzymes of purine biosynthesis and catabolism in Glycine max: Comparison of activities with N2 fixation and composition of xylem exudates during nodule development. Plant Physiol 68:1115–1122

    PubMed  CAS  Google Scholar 

  • Serraj R, Roy G, Drevon JJ. 1994. Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen. Physiol Plant 91:161–168

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR. 1996. Processes contributing to N2fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci 36:961–968

    Article  Google Scholar 

  • Serraj R 2003. Effect of drought stress on legume symbiotic nitrogen fixation: physiological mechanism. Ind J Exp Bot 41:1136–1141

    CAS  Google Scholar 

  • Singh RP, Srivastava HH. 1986. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiol Plant 66:413–416

    Article  CAS  Google Scholar 

  • Soussi M, Lluch C, Ocaña A. 1999. Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicer arietinum L) cultivars under salt stress. J Exp Bot 50:1701–1708

    Article  CAS  Google Scholar 

  • Soussi M, Ocaña A, Lluch C. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Sprent JL, Zahran HH. 1988. Infection development and functioning of nodules under drought and salinity. In: Beck DP, Materon LA (eds.) Nitrogen Fixation by Legumes in Mediterranean Agriculture. Martinus-Nijhoff, Dordrecht, the Netherlands, pp. 145–151

    Google Scholar 

  • Stewart CR, Voetberg G. 1985. Relationships between stress-induced ABA and proline accumulations and ABA-induced proline accumulation in excised barley leaves. Plant Physiol 79:24–27

    PubMed  CAS  Google Scholar 

  • Streeter J 1988. Inhibition of legume nodule formation and nitrogen fixation by nitrate. Crit Rev Plant Sci 7:1–23

    CAS  Google Scholar 

  • Thomas JC, McElwain EF, Bohnert HJ. 1992. Convergent induction of osmotic stress-responses. Plant Physiol 100:416–423

    PubMed  CAS  Google Scholar 

  • Vance CP, Grant JS. 1992. Control of nitrogen and carbon metabolism in root nodules. Physiol Plant 85:266–274

    Article  CAS  Google Scholar 

  • Vessey JK 1994. Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  • Vogels GD, van der Drift C. 1970. Differential analyses of glyoxylate derivatives. Anal Biochem 33:143–157

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmons M 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Cocking EC. 1955. The determination of amino acids with ninhydrin. Analystic 80:209–213

    Article  CAS  Google Scholar 

  • Yin C, Duan B, Wang X, Li C. 2004. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. José A. Herrera-Cervera for critically reviewing the manuscript as well as to Dr. Mariam Sahrawy for her support in the ABA determination. We also thank anonymous reviewers for making valuable suggestions to earlier drafts of this study. Financial support was obtained through the Andalusian Research Program (AGR-139) and the Spanish Ministry of Education and Culture grant BOS2002-04182-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Lluch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadri, M., Tejera, N.A. & Lluch, C. Alleviation of Salt Stress in Common Bean (Phaseolus vulgaris) by Exogenous Abscisic Acid Supply. J Plant Growth Regul 25, 110–119 (2006). https://doi.org/10.1007/s00344-005-0004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-005-0004-3

Keywords

Navigation