Skip to main content

Lipoprotein Glycation in Diabetes Mellitus

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 380 Accesses

Abstract

There is a pandemic of diabetes mellitus, and in spite of modern drugs and devices to assist with glucose management and modern drugs for lipids, blood pressure, and blood clotting control, many people with diabetes will develop the macrovascular and microvascular complications of diabetes. The majority of people with diabetes are likely to die of an atherosclerosis related event. Contributing factors to the cardiovascular, renal, retinal, and neuropathy damage in diabetes include quantitative and qualitative changes in lipoproteins, including increased non-enzymatic glycation, which usually correlates with levels of glycemia. Lipoprotein glycation adversely impacts many lipoprotein functions, including in lipoprotein metabolism, cellular handling of lipoproteins, vascular structure and function, and blood clotting. The quantification of lipoprotein glycation is predominantly a research tool, and the major approaches to reduce lipoprotein glycation and its adverse consequences are to improve glucose and lipid levels. The effects of modulating deglycating enzymes and of Advanced Glycation End-Product (AGE) breakers on lipoprotein glycation are ongoing areas of research. In this chapter, the chemistry of lipoprotein glycation and its adverse effects on lipoprotein metabolism and functions are reviewed and potential treatments discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (IDF) Atlas, 10th ed. https://diabetesatlas.org/atlas/tenth-edition/. Accessed 7 Jun 2022.

  2. American Diabetes Association. Diabetes vital statistics. Alexandria, VA: American Diabetes Association; 1996.

    Google Scholar 

  3. Jay RH, Betteridge DJ. The heart and macrovascular disease in diabetes mellitus. In: Pickup JC, Williams G, editors. Chronic complication of diabetes. Melbourne: Blackwell Press; 1994.

    Google Scholar 

  4. Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications. Curr Pharm Des. 2004;10:3395–418.

    Article  CAS  PubMed  Google Scholar 

  5. Betteridge DJ. Risk factors for arterial disease in diabetes: dyslipidaemia. In: Tooke JE, editor. Diabetic angiopathy. Sydney: Arnold; 1999. p. 65–92.

    Google Scholar 

  6. Reckless JPD. Diabetes. In: Dunitz M, editor. Diabetes and lipids: pocketbook, Martin Dunitz medical pocket books. 2nd ed. London: Publisher Taylor and Francis; 2011. p. 26–37.

    Google Scholar 

  7. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res. 1987;28(6):613–28.

    Article  CAS  PubMed  Google Scholar 

  8. Maillard LC. Réaction générale des acides aminés sur les sucres: ses conséquences biologiques. Compte-rendu Société de Biologie. 1912;72(LXXII):599–601 (559–61).

    Google Scholar 

  9. Thorpe SR, Lyons TJ, Baynes JW. Oxidative stress and vascular disease. Boston, MA: Kluwer Academic Publisher; 2000. p. 259–85.

    Book  Google Scholar 

  10. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996;271(17):9982–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev. 1997;5:365–91.

    Google Scholar 

  12. Lyons TJ. Glycation, oxidation, and glycoxidation reactions in the development of diabetic complications. Contrib Nephrol. 1995;112:1–10.

    Article  CAS  PubMed  Google Scholar 

  13. Cao Z, Cooper ME. Pathogenesis of diabetic nephropathy. J Diabetes Invest. 2011;2(4):243–7.

    Article  CAS  Google Scholar 

  14. Miyata T, Fu MX, Kurokawa K, van Ypersele de Strihou C, Thorpe SR, Baynes JW. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int. 1998;54(4):1290–5.

    Article  CAS  PubMed  Google Scholar 

  15. http://www.imars.org/online/?page_id=655. 21 May 2012.

  16. Niwa T. 3-Deoxyglucosone: metabolism, analysis, biological activity, and clinical implication. J Chromatogr B Biomed Sci Appl. 1999;731(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  17. Jono T, Nagai R, Lin X, Ahmed N, Thornalley PJ, Takeya M, Horiuchi S. Nepsilon-(Carboxymethyl) lysine and 3-DG-imidazolone are major AGE structures in protein modification by 3-deoxyglucosone. J Biochem. 2004;136(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  18. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BW, Uribarri J, Vlassara H. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104:1287–91.

    Article  CAS  PubMed  Google Scholar 

  19. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, Baliga S, Vassalotti JA, Vlassara H. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis. 2003;42:532–8.

    Article  CAS  PubMed  Google Scholar 

  21. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker G, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110:911–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med. 2002;251:87–101.

    Article  CAS  PubMed  Google Scholar 

  23. Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99:15596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D. Effects of low- and high-advanced glycation end product meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85:1236–43.

    Article  CAS  PubMed  Google Scholar 

  26. Baynes JW, Dominiczak H. Medical biochemistry. 2nd ed. New York: Elsevier Mosby; 2005.

    Google Scholar 

  27. Lund-Katz S, Ibdah JA, Letizia JY, Thomas MT, Phillips MC. A 13C NMR characterization of lysine residues in apolipoprotein B and their role in binding to the low density lipoprotein receptor. J Biol Chem. 1988;263(27):13831–8.

    Article  CAS  PubMed  Google Scholar 

  28. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M. Over-expression of glyoxalase-1 in bovine endothelial cells inhibits intracellular advanced glycation end-product formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998;101(5):1142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu J, Randell E, Han Y, Adeli K, Krahn J, Menq QH. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clin Biochem. 2011;44(4):307–11.

    Article  CAS  PubMed  Google Scholar 

  30. Lyons TJ, Klein RL, Baynes JW, Stevenson HC, Lopes-Virella MF. Stimulation of cholesteryl ester synthesis in human monocyte-derived macrophages by lipoproteins from Type I diabetic subjects: the influence of non-enzymatic glycosylation of low-density lipoproteins. Diabetologia. 1987;30:916–23.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi Y, Okumura K, Matsui H, Imamura A, Miura M, Takahashi R, Murakami R, Ogawa Y, Numaguchi Y, Murohara T. Impact of low-density lipoprotein particle size on carotid intima-media thickness in patients with type 2 diabetes mellitus. Metabolism. 2007;56(5):608–13.

    Article  CAS  PubMed  Google Scholar 

  32. Januszewski AS, Karschimkus C, Davis KE, O’Neal D, Ward G, Jenkins AJ. Plasma 1,5 anhydroglucitol levels, a measure of short-term glycaemia: assay assessment and lower levels in diabetic vs. non-diabetic subjects. Diabetes Res Clin Pract. 2012;95(1):e17–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986;261(11):4889–94.

    Article  CAS  PubMed  Google Scholar 

  34. Jenkins AJ, Thorpe SR, Alderson NL, Hermayer KL, Lyons TJ, King LP, Chassereau CN, Klein RL. In vivo glycated low-density lipoprotein is not more susceptible to oxidation than nonglycated low-density lipoprotein in type 1 diabetes. Metabolism. 2004;53(8):969–76.

    Article  CAS  PubMed  Google Scholar 

  35. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes. 1988;37(5):550–7.

    Article  CAS  PubMed  Google Scholar 

  36. Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type I diabetic patients and nondiabetic subjects. Diabetes. 1995;44(9):1093–8.

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka A, Yui K, Tomie N, Baba T, Tamura M, Makita T, Numano F, Nakatani S, Kato Y. New assay for glycated lipoproteins by high-performance liquid chromatography. Ann N Y Acad Sci. 1997;811:385–94.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjects measured with monoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur J Clin Chem Clin Biochem. 1993;31(11):707–13.

    CAS  PubMed  Google Scholar 

  39. Doucet C, Huby T, Ruiz J, Chapman MJ, Thillet J. Non-enzymatic glycation of lipoprotein(a) in vitro and in vivo. Atherosclerosis. 1995;118:135–43.

    Article  CAS  PubMed  Google Scholar 

  40. Makino K, Furbee JW, Scanu AM, Fless GM. Effect of glycation on the properties of lipoprotein(a). Arterioscler Thromb Vasc Biol. 1995;15:385–91.

    Article  CAS  PubMed  Google Scholar 

  41. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91(6):2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Virella G, Derrick MB, Pate V, Chassereau C, Thorpe SR, Lopes-Virella MF. Development of capture assays for different modifications of human low-density lipoprotein. Clin Diagn Lab Immunol. 2005;12(1):68–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S. Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes. 2000;49:1714–23.

    Article  CAS  PubMed  Google Scholar 

  44. Chen D, Scott E, Fulcher J, Jenkins A. Tailoring the treatment for Type 2 diabetes. One size does not fit all. In: Basu R, Basu A, editors. Precision medicine in diabetes. Springer Press; 2022.

    Google Scholar 

  45. Kim EJ, Ramachandran R, Wierzbicki AS. Lipidomics in diabetes. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):124–30.

    Article  CAS  PubMed  Google Scholar 

  46. Sobczak AIS, Pitt SJ, Smith TK, Ajjan RA, Stewart AJ. Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(1):158823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alesi S, Ghelani D, Rassie K, Mousa A. Metabolomic biomarkers in gestational diabetes mellitus: a review of the evidence. Int J Mol Sci. 2021;22(11):5512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baye E, Ukropec J, de Courten MP, Vallova S, Krumpolec P, Kurdiova T, Aldini G, Ukropcova B, de Courten B. Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep. 2017;7(1):17458.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kaplan M, Aviram M. Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis. 2000;149(1):5–17.

    Article  CAS  PubMed  Google Scholar 

  50. Tsmikas S, Shortal BP, Witztum JL, Palinski W. In vivo uptake of radiolabeled MDA2, an oxidation specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol. 2000;20:689–97.

    Article  Google Scholar 

  51. Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med. 1993;14(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  52. Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J Physiol Biochem. 2001;57(2):43–56.

    Article  CAS  PubMed  Google Scholar 

  53. Jenkins AJ, Velarde V, Klein RL, Joyce KC, Phillips KD, Mayfield RK, Lyons TJ, Jaffa AA. Native and modified LDL activate extracellular signal-regulated kinases in mesangial cells. Diabetes. 2000;49(12):2160–9.

    Article  CAS  PubMed  Google Scholar 

  54. Song W, Barth JL, Yu Y, Lu K, Dashti A, Huang Y, Gittinger CK, Argraves WS, Lyons TJ. Effects of oxidized and glycated LDL on gene expression in human retinal capillary pericytes. Invest Ophthalmol Vis Sci. 2005;46(8):2974–82.

    Article  PubMed  Google Scholar 

  55. Song W, Barth JL, Lu K, Yu Y, Huang Y, Gittinger CK, Argraves WS, Lyons TJ. Effects of modified low-density lipoproteins on human retinal pericyte survival. Ann N Y Acad Sci. 2005;1043:390–5.

    Article  CAS  PubMed  Google Scholar 

  56. Barth JL, Yu Y, Song W, Lu K, Dashti A, Huang Y, Argraves WS, Lyons TJ. Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia. 2007;50(10):2200–8.

    Article  CAS  PubMed  Google Scholar 

  57. Tames FJ, Mackness MI, Arrol S, Laing I, Durrington PN. Non-enzymatic glycation of apolipoprotein B in the sera of diabetic and non-diabetic subjects. Atherosclerosis. 1992;93(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  58. Younis N, Charlton-Menys V, Sharma R, Soran H, Durrington PN. Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis. 2009;202(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lyons TJ, Otvos JD, Klein RL, Zheng D, Garvey WT, Jenkins AJ, DCCT/EDIC Research Group. Nuclear magnetic resonance (NMR)-determined lipoprotein subclass profile: effects of hyperglycemia, lipoprotein glycation, and comparison with standard lipid profile. Diabetes. 2000;49(Suppl 1):A268.

    Google Scholar 

  60. Lyons TJ, Jenkins AJ, Zheng D, Klein RL, Otvos JD, Yu Y, Lackland DT, McGee D, MB MH, Lopes-Virella M, Garvey WT, DCCT/EDIC Research Group. Nuclear magnetic resonance-determined lipoprotein subclass profile in the DCCT/EDIC cohort: associations with carotid intima-media thickness. Diabet Med. 2006;23(9):955–66.

    Article  CAS  PubMed  Google Scholar 

  61. Toma L, Stancu CS, Sima AV. Endothelial dysfunction in diabetes is aggravated by glycated lipoproteins; novel molecular therapies. Biomedicines. 2021;9:18.

    Article  CAS  Google Scholar 

  62. Yegin A, Ozben T, Yegin H. Glycation of lipoproteins and accelerated atherosclerosis in non-insulin-dependent diabetes mellitus. Int J Clin Lab Res. 1995;25(3):157–61.

    Article  CAS  PubMed  Google Scholar 

  63. Mamo JC, Szeto L, Steiner G. Glycation of very low density lipoprotein from rat plasma impairs its catabolism. Diabetologia. 1990;33(6):339–45.

    Article  CAS  PubMed  Google Scholar 

  64. Klein RL, Wohltmann HJ, Lopes-Virella MF. Influence of glycemic control on interaction of very low- and low-density lipoproteins isolated from type I diabetic patients with human monocyte-derived macrophages. Diabetes. 1992;41(10):1301–7.

    Article  CAS  PubMed  Google Scholar 

  65. Klein RL, Lyons TJ, Lopes-Virella MF. Metabolism of very low- and low-density lipoproteins isolated from normolipidaemic type 2 (non-insulin-dependent) diabetic patients by human monocyte-derived macrophages. Diabetologia. 1990;33(5):299–305.

    Article  CAS  PubMed  Google Scholar 

  66. Klein RL, Lyons TJ, Lopes-Virella MF. Interaction of very-low-density lipoprotein isolated from type I (insulin-dependent) diabetic subjects with human monocyte-derived macrophages. Metabolism. 1989;38(11):1108–14.

    Article  CAS  PubMed  Google Scholar 

  67. Klein RL, Lopes-Virella MF. Metabolism by human endothelial cells of very low density lipoprotein subfractions isolated from type 1 (insulin-dependent) diabetic patients. Diabetologia. 1993;36(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  68. Moro E, Alessandrini P, Zambon C, Pianetti S, Pais M, Cazzolato G, Bon GB. Is glycation of low density lipoproteins in patients with Type 2 diabetes mellitus a LDL pre-oxidative condition? Diabet Med. 1999;16(8):663–9.

    Article  CAS  PubMed  Google Scholar 

  69. Akanji AO, Abdella N, Mojiminiyi OA. Determinants of glycated LDL levels in nondiabetic and diabetic hyperlipidaemic patients in Kuwait. Clin Chim Acta. 2002;317(1–2):171–6.

    Article  CAS  PubMed  Google Scholar 

  70. Rabbani N, Chittari MV, Bodmer CW, Zehnder D, Ceriello A, Thornalley PJ. Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes. 2010;59(4):1038–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chao PC, Huang CN, Hsu CC, Yin MC, Guo YR. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1α and MCP-1 levels in type 2 diabetic patients. Eur J Nutr. 2010;49(7):429–34.

    Article  CAS  PubMed  Google Scholar 

  72. Steinberg D, Witztum JL. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990;264(23):3047–52.

    Article  CAS  PubMed  Google Scholar 

  73. Soran H, Durrington PN. Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol. 2011;22(4):254–61.

    Article  CAS  PubMed  Google Scholar 

  74. Rabbani N, Godfrey L, Xue M, Shaheen F, Geoffrion M, Milne R, Thornalley PJ. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes. 2011;60(7):1973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994;43(8):1010–4.

    Article  CAS  PubMed  Google Scholar 

  76. Jenkins AJ, Klein RL, Chassereau CN, Hermayer KL, Lopes-Virella MF. LDL from patients with well-controlled IDDM is not more susceptible to in vitro oxidation. Diabetes. 1996;45(6):762–7.

    Article  CAS  PubMed  Google Scholar 

  77. Edwards IJ, Wagner JD, Litwak KN, Rudel LL, Cefalu WT. Glycation of plasma low density lipoproteins increases interaction with arterial proteoglycans. Diabetes Res Clin Pract. 1999;46(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  78. Wang X, Bucala R, Milne R. Epitopes close to the apolipoprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products. Proc Natl Acad Sci U S A. 1998;95(13):7643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med. 2010;14(12):2790–802.

    Article  CAS  PubMed  Google Scholar 

  80. Lam MC, Tan KC, Lam KS. Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis. 2004;177(2):313–20.

    Article  CAS  PubMed  Google Scholar 

  81. Brown BE, Rashid I, van Reyk DM, Davies MJ. Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages. FEBS J. 2007;274(6):1530–41.

    Article  CAS  PubMed  Google Scholar 

  82. Brown BE, Dean RT, Davies MJ. Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia. 2005;48(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  83. Artwohl M, Graier WF, Roden M, Bischof M, Freudenthaler A, Waldhäusl W, Baumgartner-Parzer SM. Diabetic LDL triggers apoptosis in vascular endothelial cells. Diabetes. 2003;52(5):1240–7.

    Article  CAS  PubMed  Google Scholar 

  84. Sonoki K, Yoshinari M, Iwase M, Iino K, Ichikawa K, Ohdo S, Higuchi S, Iida M. Glycoxidized low-density lipoprotein enhances monocyte chemoattractant protein-1 mRNA expression in human umbilical vein endothelial cells: relation to lysophosphatidylcholine contents and inhibition by nitric oxide donor. Metabolism. 2002;51(9):1135–42.

    Article  CAS  PubMed  Google Scholar 

  85. Sonoki K, Iwase M, Iino K, Ichikawa K, Yoshinari M, Ohdo S, Higuchi S, Iida M. Dilazep and fenofibric acid inhibit MCP-1 mRNA expression in glycoxidized LDL-stimulated human endothelial cells. Eur J Pharmacol. 2003;475(1–3):139–47.

    Article  CAS  PubMed  Google Scholar 

  86. Lyons TJ, Li W, Wells-Knecht MC, Jokl R. Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes. 1994;43(9):1090–5.

    Article  CAS  PubMed  Google Scholar 

  87. Lyons TJ, Li W, Wojciechowski B, Wells-Knecht MC, Wells-Knecht KJ, Jenkins AJ. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Invest Ophthalmol Vis Sci. 2000;41(5):1176–80.

    CAS  PubMed  Google Scholar 

  88. Gupta S, Rifici V, Crowley S, Brownlee M, Shan Z, Schlondorff D. Interactions of LDL and modified LDL with mesangial cells and matrix. Kidney Int. 1992;41(5):1161–9.

    Article  CAS  PubMed  Google Scholar 

  89. Schlondorff D. Cellular mechanisms of lipid injury in the glomerulus. Am J Kidney Dis. 1993;22(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  90. Santini E, Lupi R, Baldi S, Madec S, Chimenti D, Ferrannini E, Solini A. Effects of different LDL particles on inflammatory molecules in human mesangial cells. Diabetologia. 2008;51(11):2117–25.

    Article  CAS  PubMed  Google Scholar 

  91. Ha H, Kamanna VS, Kirschenbaum MA, Kim KH. Role of glycated low density lipoprotein in mesangial extracellular matrix synthesis. Kidney Int Suppl. 1997;60:S54–9.

    CAS  PubMed  Google Scholar 

  92. Fujii Y, Iwano M, Dohi K. Effect of lipids on glomerular fibrinolysis in vitro. Contrib Nephrol. 1997;120:140–5.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Ren S, Sun D, Shen GX. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(7):1140–8.

    Article  CAS  PubMed  Google Scholar 

  94. Ren S, Shen GX. Impact of antioxidants and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(6):1688–93.

    Article  CAS  PubMed  Google Scholar 

  95. Ren S, Lee H, Hu L, Lu L, Shen GX. Impact of diabetes-associated lipoproteins on generation of fibrinolytic regulators from vascular endothelial cells. J Clin Endocrinol Metab. 2002;87(1):286–91.

    Article  CAS  PubMed  Google Scholar 

  96. Ma GM, Halayko AJ, Stelmack GL, Zhu F, Zhao R, Hillier CT, Shen GX. Effects of oxidized and glycated low-density lipoproteins on transcription and secretion of plasminogen activator inhibitor-1 in vascular endothelial cells. Cardiovasc Pathol. 2006;15(1):3–10.

    Article  PubMed  Google Scholar 

  97. Sangle GV, Zhao R, Mizuno TM, Shen GX. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology. 2010;151(9):4455–66.

    Article  CAS  PubMed  Google Scholar 

  98. Calzada C, Coulon L, Halimi D, Le Coquil E, Pruneta-Deloche V, Moulin P, Ponsin G, Véricel E, Lagarde MJ. In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase. Clin Endocrinol Metab. 2007;92(5):1961–4.

    Article  CAS  Google Scholar 

  99. Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia F, Curatola G, Mazzanti L. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab. 2002;87(5):2180–4.

    Article  CAS  PubMed  Google Scholar 

  100. Galle J, Schneider R, Winner B, Lehmann-Bodem C, Schinzel R, Münch G, Conzelmann E, Wanner C. Glycoxidized LDL impair endothelial function more potently than oxidized LDL: role of enhanced oxidative stress. Atherosclerosis. 1998;138(1):65–77.

    Article  CAS  PubMed  Google Scholar 

  101. Dong Y, Wu Y, Wu M, Wang S, Zhang J, Xie Z, Xu J, Song P, Wilson K, Zhao Z, Lyons T, Zou MH. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J Cell Mol Med. 2009;13(9A):2899–910.

    Article  CAS  PubMed  Google Scholar 

  102. Posch K, Simecek S, Wascher TC, Jürgens G, Baumgartner-Parzer S, Kostner GM, Graier WF. Glycated low-density lipoprotein attenuates shear stress-induced nitric oxide synthesis by inhibition of shear stress-activated L-arginine uptake in endothelial cells. Diabetes. 1999;48(6):1331–7.

    Article  CAS  PubMed  Google Scholar 

  103. Nivoit P, Wiernsperger N, Moulin P, Lagarde M, Renaudin C. Effect of glycated LDL on microvascular tone in mice: a comparative study with LDL modified in vitro or isolated from diabetic patients. Diabetologia. 2003;46(11):1550–8.

    Article  CAS  PubMed  Google Scholar 

  104. Calvo C, Ponsin G, Berthezene F. Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients. Diabetes Metab. 1988;14(3):264–9.

    CAS  Google Scholar 

  105. Ferretti G, Bacchetti T, Marchionni C, Dousset N. Effect of non-enzymatic glycation on aluminium-induced lipid peroxidation of human high density lipoproteins (HDL). Nutr Metab Cardiovasc Dis. 2004;14(6):358–65.

    Article  CAS  PubMed  Google Scholar 

  106. Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism. 1999;48(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou H, Tan KC, Shiu SW, Wong Y. Increased serum advanced glycation end products are associated with impairment in HDL antioxidative capacity in diabetic nephropathy. Nephrol Dial Transplant. 2008;23(3):927–33.

    Article  CAS  PubMed  Google Scholar 

  108. Kalogerakis G, Baker AM, Christov S, Rowley KG, Dwyer K, Winterbourn C, Best JD, Jenkins AJ. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease. Clin Sci (Lond). 2005;108(6):497–506.

    Article  CAS  PubMed  Google Scholar 

  109. Mastorikou M, Mackness B, Liu Y, Mackness M. Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet Med. 2008;25(9):1049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perségol L, Foissac M, Lagrost L, Athias A, Gambert P, Vergès B, Duvillard L. HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia. 2007;50(11):2384–7.

    Article  PubMed  Google Scholar 

  111. Low H, Hoang A, Forbes J, Thomas M, Lyons JG, Nestel P, Bach LA, Sviridov D. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia. 2012;55(9):2513–21.

    Article  CAS  PubMed  Google Scholar 

  112. Passarelli M, Shimabukuro AF, Catanozi S, Nakandakare ER, Rocha JC, Carrilho AJ, Quintão EC. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta. 2000;301(1–2):119–34.

    Article  CAS  PubMed  Google Scholar 

  113. de Boer JF, Annema W, Schreurs M, van der Veen JN, van der Giet M, Nijstad N, Kuipers F, Tietge UJ. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J Lipid Res. 2012;53(3):348–57.

    Article  Google Scholar 

  114. Barter P, Rye K. Lecithin:cholesterol acyltransferase. In: Betteridge D, Illingworth D, Shepherd J, editors. Lipoproteins in health and disease. New York: Oxford University Press; 1999. p. 261–76.

    Google Scholar 

  115. Nobecourt E, Davies MJ, Brown BE, Curtiss LK, Bonnet DJ, Charlton F, Januszewski AS, Jenkins AJ, Barter PJ, Rye KA. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia. 2007;50(3):643–53.

    Article  CAS  PubMed  Google Scholar 

  116. Nelson CL, Karschimkus CS, Dragicevic G, Packham DK, Wilson AM, O’Neal D, Becker GJ, Best JD, Jenkins AJ. Systemic and vascular inflammation is elevated in early IgA and type 1 diabetic nephropathies and relates to vascular disease risk factors and renal function. Nephrol Dial Transplant. 2005;20(11):2420–6.

    Article  CAS  PubMed  Google Scholar 

  117. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, Shikata Y, Miyatake N, Miyasaka M, Makino H. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in diabetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes. 1997;46(12):2075–81.

    Article  CAS  PubMed  Google Scholar 

  118. Khalfaoui T, Lizard G, Beltaief O, Colin D, Ben Hamida J, Errais K, Ammous I, Zbiba W, Tounsi L, Zhioua R, Anane R, Ouertani-Meddeb A. Immunohistochemical analysis of cellular adhesion molecules (ICAM-1, VCAM-1) and VEGF in fibrovascular membranes of patients with proliferative diabetic retinopathy: preliminary study. Pathol Biol (Paris). 2009;57(7–8):513–7.

    Article  CAS  PubMed  Google Scholar 

  119. Albertini JP, Valensi P, Lormeau B, Aurousseau MH, Ferrière F, Attali JR, Gattegno L. Elevated concentrations of soluble E-selectin and vascular cell adhesion molecule-1 in NIDDM. Effect of intensive insulin treatment. Diabetes Care. 1998;21(6):1008–13.

    Article  CAS  PubMed  Google Scholar 

  120. Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, Yan L, Davies MJ, Brown BE, Jenkins AJ, Dusting GJ, Bonnet DJ, Curtiss LK, Barter PJ, Rye KA. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766–72.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM, Wong H, Peters AL. Glycation impairs high-density lipoprotein function. Diabetologia. 2000;43(3):312–20.

    Article  CAS  PubMed  Google Scholar 

  122. Pan B, Ren H, He Y, Lv X, Ma Y, Li J, Huang L, Yu B, Kong J, Niu C, Zhang Y, Sun WB, Zheng L. HDL of patients with type 2 diabetes mellitus elevates the capability of promoting breast cancer metastasis. Clin Cancer Res. 2012;18(5):1246–56.

    Article  CAS  PubMed  Google Scholar 

  123. Tabet F, Lambert G, Cuesta Torres LF, Hou L, Sotirchos I, Touyz RM, Jenkins AJ, Barter PJ, Rye KA. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1192–200.

    Article  CAS  PubMed  Google Scholar 

  124. Liu D, Ji L, Zhang D, Tong X, Pan B, Liu P, Zhang Y, Huang Y, Su J, Willard B, Zheng L. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab Res Rev. 2012;28(2):186–95.

    Article  CAS  PubMed  Google Scholar 

  125. Klaya F, Durlach V, Bertin E, Monier F, Monboisse JC, Gillery P. Evaluation of serum glycated lipoprotein(a) levels in noninsulin-dependent diabetic patients. Clin Biochem. 1997;30(3):227–30.

    Article  CAS  PubMed  Google Scholar 

  126. Galle J, Winner B, Conzelmann E, Wanner C. Impairment of endothelial function induced by glycoxidized lipoprotein a [Lp(a)]. Cell Mol Biol (Noisy-le-Grand). 1998;44(7):1035–45.

    CAS  PubMed  Google Scholar 

  127. Shen GX. Impact and mechanism for oxidized and glycated lipoproteins on generation of fibrinolytic regulators from vascular endothelial cells. Mol Cell Biochem. 2003;246(1–2):69–74.

    Article  CAS  PubMed  Google Scholar 

  128. Caslake MJ, Packard CJ, Suckling KE, Holmes SD, Chamberlain P, Macphee CH. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis. 2000;150:413–9.

    Article  CAS  PubMed  Google Scholar 

  129. Prescott S, Zimmerman G, Stafforinie D, McIntryre T. Platelet activating factor and related Lipid mediators. Annu Rev Biochem. 2000;69:419–45.

    Article  CAS  PubMed  Google Scholar 

  130. de Castro SH, Faria Neto HC, Gomes MB. Platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with type 1 diabetes mellitus. Arq Bras Cardiol. 2007;88(2):179–84.

    Article  PubMed  Google Scholar 

  131. Gomes MB, Cobas RA, Nunes E, Nery M, Castro-Faria-Neto HC, Tibiriçá E. Serum platelet-activating factor acetylhydrolase activity: a novel potential inflammatory marker in type 1 diabetes. Prostaglandins Other Lipid Mediat. 2008;87(1–4):42–6.

    Article  CAS  PubMed  Google Scholar 

  132. Gomes MB, Cobas RA, Nunes E, Castro-Faria-Neto HC, da Matta MF, Neves R, Tibiriçá E. Plasma PAF-acetylhydrolase activity, inflammatory markers and susceptibility of LDL to in vitro oxidation in patients with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2009;85(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  133. Serban M, Tanaseanu C, Kosaka T, Vidulescu C, Stoian I, Marta DS, Tanaseanu S, Moldoveanu E. Significance of platelet-activating factor acetylhydrolase in patients with non-insulin-dependent (type 2) diabetes mellitus. J Cell Mol Med. 2002;6(4):643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yamashita S, Matsuzawa Y. Cholesteryl ester transfer protein. In: Betteridge D, Illingworth D, Shepherd J, editors. Lipoproteins in health and disease. New York: Oxford University Press; 1999. p. 277–300.

    Google Scholar 

  135. Wegner M, Araszkiewicz A, Zozulińska-Ziółkiewicz D, Wierusz-Wysocka B, Pioruńska-Mikołajczak A, Pioruńska-Stolzmann M. The relationship between concentrations of magnesium and oxidized low density lipoprotein and the activity of platelet activating factor acetylhydrolase in the serum of patients with type 1 diabetes. Magnes Res. 2010;23(2):97–104.

    CAS  PubMed  Google Scholar 

  136. Précourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E, Levy E. The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis. 2011;214(1):20–36.

    Article  PubMed  Google Scholar 

  137. Mackness B, McElduff P, Mackness MI. The paraoxonase-2-310 polymorphism is associated with the presence of microvascular complications in diabetes mellitus. J Intern Med. 2005;258(4):363–8.

    Article  CAS  PubMed  Google Scholar 

  138. Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Genet Mol Biol. 1996;7(2):69–76.

    CAS  Google Scholar 

  139. Mackness B, Durrington PN, Mackness MI. The paraoxonase gene family and coronary heart disease. Curr Opin Lipidol. 2002;13(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  140. Tavori H, Khatib S, Aviram M, Vaya J. Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity. Bioorg Med Chem. 2008;16(15):7504–9.

    Article  CAS  PubMed  Google Scholar 

  141. Kelso GJ, Stuart WD, Richter RJ, et al. Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry. 1994;33:832–9.

    Article  CAS  PubMed  Google Scholar 

  142. Gaidukov L, Tawfik DS. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry. 2005;44:11843–54.

    Article  CAS  PubMed  Google Scholar 

  143. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275:3957–62.

    Article  CAS  PubMed  Google Scholar 

  144. Costa LG, Cole TB, Furlong CE. Paraoxonase (PON1): from toxicology to cardiovascular medicine. Acta Biomed. 2005;76(Suppl 2):50–7.

    PubMed  Google Scholar 

  145. Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM. High-density lipoprotein loses its antiinflammatory properties during acute influenza A infection. Circulation. 2001;103(18):2283–8.

    Article  PubMed  Google Scholar 

  146. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–47.

    Article  CAS  PubMed  Google Scholar 

  147. Chen Q, Reis SE, Kammerer CM, et al. Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study. Am J Hum Genet. 2003;72(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  148. Ruiz J, Blanche H, James RW, et al. Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet. 1995;346:869–72.

    Article  CAS  PubMed  Google Scholar 

  149. Pfohl M, Koch M, Enderele MD, et al. Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in Type 2 diabetes. Diabetes. 1999;48:623–7.

    Article  CAS  PubMed  Google Scholar 

  150. Kao YL, Donaghue K, Chan A, Knight J, Silink M. A variant of paraoxonase (PON1) gene is associated with diabetic retinopathy in IDDM. J Clin Endocrinol Metab. 1998;83:2589–92.

    Article  CAS  PubMed  Google Scholar 

  151. Jenkins AJ, Klein RL, Zheng D, et al. Paraoxonase genotype (192 Gln-Arg) and serum paraoxonase arylesterase activity: relationship with Type I diabetes and nephropathy. Diabetes. 2000;49(Suppl 1):643P.

    Google Scholar 

  152. Kao Y, Donaghue KC, Chan A, Bennetts BH, Knight J, Silink M. Paraoxonase gene cluster is a genetic marker for early microvascular complications in type 1 diabetes. Diabet Med. 2002;19(3):212–5.

    Article  CAS  PubMed  Google Scholar 

  153. Leviev I, Kalix B, Brulhart Meynet MC, James RW. The paraoxonase PON1 promoter polymorphism C(−107)T is associated with increased serum glucose concentrations in non-diabetic patients. Diabetologia. 2001;44(9):1177–83.

    Article  CAS  PubMed  Google Scholar 

  154. Mackness B, Durrington PN, Boulton AJ, Hine D, Mackness MI. Serum paraoxonase activity in patients with type 1 diabetes compared to healthy controls. Eur J Clin Investig. 2002;32(4):259–64.

    Article  CAS  Google Scholar 

  155. Kordonouri O, James RW, Bennetts B, et al. Modulation by blood glucose levels of activity and concentration of paraoxonase in young patients with type 1 diabetes mellitus. Metabolism. 2001;50(6):657–60.

    Article  CAS  PubMed  Google Scholar 

  156. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN. Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by HDL against LDL oxidative modification. FEBS Lett. 1998;423:57–60.

    Article  CAS  PubMed  Google Scholar 

  157. Ferretti G, Bacchetti T, Marchionni C, Caldarelli L, Curatola G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 2001;38(4):163–9.

    Article  CAS  PubMed  Google Scholar 

  158. Inoue M, Suehiro T, Nakamura T, Ikeda Y, Kumon Y, Hashimoto K. Serum arylesterase/diazoxonase activity and genetic polymorphisms in patients with type 2 diabetes. Metabolism. 2000;49(11):1400–5.

    Article  CAS  PubMed  Google Scholar 

  159. Mackness B, Abuashia B, Boulton A, Mackness M. Low PON activity in Type 2 diabetes mellitus com plicated by retinopathy. Clin Sci. 2000;98:355–63.

    Article  CAS  Google Scholar 

  160. Ikeda Y, Suehiro T, Inoue M, et al. Serum paraoxonase activity and its relationship to diabetic complications in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1998;47(5):598–602.

    Article  CAS  PubMed  Google Scholar 

  161. Rajkovic MG, Rumora L, Barisic K. The paraoxonase 1, 2 and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122–30.

    Article  CAS  PubMed  Google Scholar 

  162. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  163. Peelman F, Vandekerckhove J, Rosseneu M. Structure and function of lecithin cholesterol acyl transferase: new insights from structural predictions and animal models. Curr Opin Lipidol. 2000;11(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  164. Bieliciki JK, Forte TM, McCall MR. Minimally oxidized LDL is a potent inhibitor of LCAT activity. J Lipid Res. 1996;37:1012–21.

    Article  Google Scholar 

  165. McCall M, van den Berg J, Kuypers F. Modification of LCAT activity and HDL structure. New links between cigarette smoking and coronary artery disease risk. Arterioscler Thromb. 1994;114:248–53.

    Article  Google Scholar 

  166. Nakhjavani M, Asgharani F, Khalilzadeh O, Esteghamati A, Ghaneei A, Morteza A, Anvari M. Oxidized low-density lipoprotein is negatively correlated with lecithin-cholesterol acyltransferase activity in type 2 diabetes mellitus. Am J Med Sci. 2011;341(2):92–5.

    Article  PubMed  Google Scholar 

  167. Chang CK, Tso TK, Snook JT, Huang YS, Lozano RA, Zipf WB. Cholesteryl ester transfer and cholesterol esterification in type 1 diabetes: relationships with plasma glucose. Acta Diabetol. 2001;38(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  168. Gillett MP, Obineche EN, El-Rokhaimi M, Lakhani MS, Abdulle A, Sulaiman M. Lecithin: cholesterol acyltransfer, dyslipoproteinaemia and membrane lipids in uraemia. J Nephrol. 2001;14(6):472–80.

    CAS  PubMed  Google Scholar 

  169. Nestel P, Hoang A, Sviridov D, Straznicky N. Cholesterol efflux from macrophages is influenced differentially by plasmas from overweight insulin-sensitive and -resistant subjects. Int J Obes (Lond). 2012;36(3):407–13.

    Article  CAS  PubMed  Google Scholar 

  170. Nakhjavani M, Esteghamati A, Esfahanian F, Ghanei A, Rashidi A, Hashemi S. HbA1c negatively correlates with LCAT activity in type 2 diabetes. Diabetes Res Clin Pract. 2008;81(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  171. Iizuka T. Effect of anti-diabetic treatment on high density lipoprotein-composition and lecithin:cholesterol acyltransferase activity—a comparison between insulin, sulfonylurea and diet alone treatments. Jpn J Med. 1989;28(4):457–61.

    Article  CAS  PubMed  Google Scholar 

  172. Akyuz F, Tekin N, Aydın O, Temel HE, Isikli B. The effect of metformin and exercise on serum lipids, nitric oxide synthase and liver nitric oxide levels in streptozotocin-nicotinamide induced diabetic rats. Afr J Pharm Pharmacol. 2012;6(5):336–42.

    Article  CAS  Google Scholar 

  173. Fournier N, Myara I, Atger V, Moatti N. Reactivity of lecithin-cholesterol acyl transferase (LCAT) towards glycated high-density lipoproteins (HDL). Clin Chim Acta. 1995;234(1–2):47–61.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang Z, Yamashita S, Hirano K, Nakagawa-Toyama Y, Matsuyama A, Nishida M, Sakai N, Fukasawa M, Arai H, Miyagawa J, Matsuzawa Y. Expression of cholesteryl ester transfer protein in human atherosclerotic lesions and its implication in reverse cholesterol transport. Atherosclerosis. 2001;159(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  175. Ishikawa Y, Ito K, Akasaka Y, Ishii T, Masuda T, Zhang L, Akishima Y, Kiguchi H, Nakajima K, Hata Y. The distribution and production of cholesteryl ester transfer protein in the human aortic wall. Atherosclerosis. 2001;156(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  176. Kakko S, Tamminen M, Päivänsalo M, Kauma H, Rantala AO, Lilja M, Reunanen A, Kesäniemi YA, Savolainen MJ. Variation at the cholesteryl ester transfer protein gene in relation to plasma high density lipoproteins cholesterol levels and carotid intima-media thickness. Eur J Clin Investig. 2001;31(7):593–602.

    Article  CAS  Google Scholar 

  177. Bagdade JD, Kelley DE, Henry RR, Eckel RH, Ritter MC. Effects of multiple daily insulin injections and intraperitoneal insulin therapy on cholesteryl ester transfer and lipoprotein lipase activities in NIDDM. Diabetes. 1997;46:414–20.

    Article  CAS  PubMed  Google Scholar 

  178. Passarelli M, Cantanozi S, Nakandakare ER, et al. Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins. Diabetologia. 1997;40:1085–93.

    Article  CAS  PubMed  Google Scholar 

  179. Lemkadem B, Loiseau D, Larcher G, Malthiery Y, Foussard F. Effect of the nonenzymatic glycosylation of high density lipoprotein-3 on the cholesterol ester transfer protein activity. Lipids. 1999;34(12):1281–6.

    Article  CAS  PubMed  Google Scholar 

  180. Connelly MA, Parry TJ, Giardino EC, Huang Z, Cheung WM, Chen C, Cools F, Van der Linde H, Gallacher DJ, Kuo GH, Sarich TC, Demarest KT, Damiano BP. Torcetrapib produces endothelial dysfunction independent of cholesteryl ester transfer protein inhibition. J Cardiovasc Pharmacol. 2010;55(5):459–68.

    Article  CAS  PubMed  Google Scholar 

  181. Simic B, Hermann M, Shaw SG, Bigler L, Stalder U, Dörries C, Besler C, Lüscher TF, Ruschitzka F. Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012;33(13):1615–24.

    Article  CAS  PubMed  Google Scholar 

  182. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  183. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  184. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  185. Scott R, Kesaniemi A, Wu L, Colagiuri S, Keech A, Jenkins AJ. Long-term glycemic variability and vascular complications in type 2 diabetes: post hoc analysis of the FIELD study. J Clin Endocrinol Metab. 2020;105(10):dgaa361.

    Article  PubMed  Google Scholar 

  186. Ceriello A, Prattichizzo F. Variability of risk factors and diabetes complications. Cardiovasc Diabetol. 2021;20(1):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol. 2020;19(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  189. International Hypoglycaemia Study Group. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019;7(5):385–96.

    Article  Google Scholar 

  190. Frier BM. Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications. Nat Rev Endocrinol. 2014;10(12):711–22.

    Article  CAS  PubMed  Google Scholar 

  191. Rutter MK, Prais HR, Charlton-Menys V, Gittins M, Roberts C, Davies RR, Moorhouse A, Jinadev P, France M, Wiles PG, Gibson JM, Dean J, Kalra PA, Cruickshank JK, Durrington PN. Protection against nephropathy in diabetes with atorvastatin (PANDA): a randomized double-blind placebo-controlled trial of high- vs. low-dose atorvastatin. Diabet Med. 2011;28(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  192. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48(1):198–202.

    Article  CAS  PubMed  Google Scholar 

  193. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9.

    Article  CAS  PubMed  Google Scholar 

  194. Zou CY, Liu XK, Sang YQ, Wang B, Liang J. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: a meta-analysis. Medicine (Baltimore). 2019;98(49):e18245.

    Article  CAS  PubMed  Google Scholar 

  195. Butler J, Usman MS, Khan MS, Greene SJ, Friede T, Vaduganathan M, Filippatos G, Coats AJS, Anker SD. Efficacy and safety of SGLT2 inhibitors in heart failure: systematic review and meta-analysis. ESC Heart Fail. 2020;7(6):3298–309.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. 2020;29(2):190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Scheen AJ. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications. Diabetes Metab. 2019;45(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  198. Mirarchi L, Amodeo S, Citarrella R, Licata A, Soresi M, Giannitrapani L. SGLT2 inhibitors as the most promising influencers on the outcome of non-alcoholic fatty liver disease. Int J Mol Sci. 2022;23(7):3668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Modi A, Agrawal A, Morgan F. Euglycemic diabetic ketoacidosis: a review. Curr Diabetes Rev. 2017;13(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  200. Musso G, Saba F, Cassader M, Gambino R. Diabetic ketoacidosis with SGLT2 inhibitors. BMJ. 2020;371:m4147.

    Article  PubMed  Google Scholar 

  201. Colhoun HM, Thomason MJ, Mackness MI, Maton SM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Fuller JH, Collaborative AtoRvastatin Diabetes Study (CARDS). Design of the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med. 2002;19(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  202. Collins R, Armitage J, Parish S, Sleight P, Peto R, Heart Protection Study Collaborative Group. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757–67.

    Article  PubMed  Google Scholar 

  203. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesäniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M, FIELD Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.

    Article  CAS  PubMed  Google Scholar 

  204. Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, Jenkins AJ, O’Connell RL, Whiting MJ, Glasziou PP, Simes RJ, Kesäniemi YA, Gebski VJ, Scott RS, Keech AC, Fenofibrate Intervention and Event Lowering in Diabetes Study Investigators. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54(2):280–90.

    Article  CAS  PubMed  Google Scholar 

  205. Ting RD, Keech AC, Drury PL, Donoghoe MW, Hedley J, Jenkins AJ, Davis TM, Lehto S, Celermajer D, Simes RJ, Rajamani K, Stanton K, FIELD Study Investigators. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care. 2012;35(2):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d’Emden MC, Crimet DC, O’Connell RL, Colman PG, FIELD Study Investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    Article  CAS  PubMed  Google Scholar 

  207. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC Jr, Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Article  Google Scholar 

  208. Zhu L, Hayen A, Bell KJL. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study. Cardiovasc Diabetol. 2020;19(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Trialists CT. Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

    Article  Google Scholar 

  210. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  211. Ballantyne CM, Bays H, Catapano AL, Goldberg A, Ray KK, Saseen JJ. Role of bempedoic acid in clinical practice. Cardiovasc Drugs Ther. 2021;35(4):853–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wu H, Shang H, Wu J. Effect of ezetimibe on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Endocrine. 2018;60(2):229–39.

    Article  PubMed  Google Scholar 

  213. Preiss D, Sattar N. Statins and the risk of new-onset diabetes: a review of recent evidence. Curr Opin Lipidol. 2011;22(6):460–6.

    Article  CAS  PubMed  Google Scholar 

  214. Younis NN, Soran H, Sharma R, Charlton-Menys V, Greenstein A, Elseweidy MM, Durrington PN. Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and non-statin-treated type 2 diabetes. Diab Vasc Dis Res. 2010;7(4):289–95.

    Article  PubMed  Google Scholar 

  215. Suzuki T, Oba K, Futami S, Suzuki K, Ouchi M, Igari Y, Matsumura N, Watanabe K, Kigawa Y, Nakano H. Blood glucose-lowering activity of colestimide in patients with type 2 diabetes and hypercholesterolemia: a case-control study comparing colestimide with acarbose. J Nippon Med Sch. 2006;73(5):277–84.

    Article  CAS  PubMed  Google Scholar 

  216. Goldberg RB, Jacobson TA. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clin Proc. 2008;83(4):470–8.

    Article  CAS  PubMed  Google Scholar 

  217. Kobayashi S, Moriya H, Negishi K, Maesato K, Ohtake T. LDL-apheresis up-regulates VEGF and IGF-I in patients with ischemic limb. J Clin Apher. 2003;18(3):115–9.

    Article  PubMed  Google Scholar 

  218. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation. 1997;95(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  219. Pares MN, D’Amico EA, Kutner JM, Chamone Dde A, Bydlowski SP. Platelet aggregation and lipoprotein levels in a patient with familial hypercholesterolemia after selective LDL-apheresis. Sao Paulo Med J. 1997;115(3):1448–51.

    Article  CAS  PubMed  Google Scholar 

  220. Kobayashi S, Oka M, Moriya H, Maesato K, Okamoto K, Ohtake T. LDL-apheresis reduces P-Selectin, CRP and fibrinogen—possible important implications for improving atherosclerosis. Ther Apher Dial. 2006;10(3):219–23.

    Article  CAS  PubMed  Google Scholar 

  221. Xi M, Hai C, Tang H, Chen M, Fang K, Liang X. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother Res. 2008;22(2):228–37.

    Article  CAS  PubMed  Google Scholar 

  222. Motomura K, Fujiwara Y, Kiyota N, Tsurushima K, Takeya M, Nohara T, Nagai R, Ikeda T. Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J Agric Food Chem. 2009;57(17):7666–72.

    Article  CAS  PubMed  Google Scholar 

  223. Panagiotopoulos S, O’Brien RC, Bucala R, Cooper ME, Jerums G. Aminoguanidine has an anti-atherogenic effect in the cholesterol-fed rabbit. Atherosclerosis. 1998;136(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  224. Ulrich P, Zhang X. Pharmacological reversal of advanced glycation end-product-mediated protein crosslinking. Diabetologia. 1997;40(Suppl 2):S157–9.

    Article  PubMed  Google Scholar 

  225. Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996;9(2):69–77.

    Article  CAS  PubMed  Google Scholar 

  226. Philis-Tsimikas A, Parthasarathy S, Picard S, Palinski W, Witztum JL. Aminoguanidine has both pro-oxidant and antioxidant activity toward LDL. Arterioscler Thromb Vasc Biol. 1995;15(3):367–76.

    Article  CAS  PubMed  Google Scholar 

  227. Sing R, Barden A, Mori T, Beilin L. Advanced glycation end products. Diabetologia. 2001;44:129–46.

    Article  Google Scholar 

  228. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE, Spinowitz BS, Whittier FC, Wuerth JP, ACTION I Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004;24(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  229. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun. 2002;290(3):973–8.

    Article  CAS  PubMed  Google Scholar 

  230. Whittier F, Spinowitz B, Wuerth JP, et al. Pimagedine safety profile in patients with Type 1 diabetes. J Am Soc Nephrol. 1999;10:184A.

    Google Scholar 

  231. Nilsson BO. Biological effects of aminoguanidine: an update. Inflamm Res. 1999;48:509–15.

    Article  CAS  PubMed  Google Scholar 

  232. Picard S, Parthasarathy S, Fruebis J, Witztum JL. Aminoguanidine inhibits oxidative modification of low-density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1992;89(15):6876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jedidi I, Thérond P, Zarev S, Cosson C, Couturier M, Massot C, Jore D, Gardès-Albert M, Legrand A, Bonnefont-Rousselot D. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Biochemistry. 2003;42(38):11356–65.

    Article  CAS  PubMed  Google Scholar 

  234. Oak JH, Youn JY, Cai H. Aminoguanidine inhibits aortic hydrogen peroxide production. VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol. 2009;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, McDaniel ML, Williamson JR, Currie MG. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993;233(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  236. Wu G. Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-L-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes. 1995;44(3):360–4.

    Article  CAS  PubMed  Google Scholar 

  237. Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun. 1999;257(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  238. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem. 2000;275(28):21177–84.

    Article  CAS  PubMed  Google Scholar 

  239. Metz TO, Alderson NL, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys. 2003;419(1):41–9.

    Article  PubMed  Google Scholar 

  240. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, Mijnhout GS, Bilo HJ, Gans RO, Navis GJ, Bakker SJ. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33(7):1598–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang Y, Li Y, Yang Z, Wang Z, Chang J, Zhang T, Chi Y, Han N, Zhao K. Pyridoxamine treatment of HK-2 human proximal tubular epithelial cells reduces oxidative stress and the inhibition of autophagy induced by high glucose levels. Med Sci Monit. 2019;25:1480–8.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53(7):1506–16.

    Article  CAS  PubMed  Google Scholar 

  243. Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A. The multifaceted therapeutic potential of benfotiamine. Pharmacol Res. 2010;61(6):482–8.

    Article  CAS  PubMed  Google Scholar 

  244. Katare RG, Caporali A, Oikawa A, Meloni M, Emanueli C, Madeddu P. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail. 2010;3(2):294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Du X, Edelstein D, Brownlee M. Oral benfotiamine plus alpha-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia. 2008;51(10):1930–2.

    Article  CAS  PubMed  Google Scholar 

  246. Beltramo E, Berrone E, Tarallo S, Porta M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 2008;45(3):131–41.

    Article  CAS  PubMed  Google Scholar 

  247. Waanders F, van den Berg E, Nagai R, van Veen I, Navis G, van Goor H. Renoprotective effects of the AGE-inhibitor pyridoxamine in experimental chronic allograft nephropathy in rats. Nephrol Dial Transplant. 2008;23(2):518–24.

    Article  CAS  PubMed  Google Scholar 

  248. Degenhardt TP, Alderson NL, Arrington DD, Beattie RJ, Basgen JM, Steffes MW, Thorpe SR, Baynes JW. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 2002;61(3):939–50.

    Article  CAS  PubMed  Google Scholar 

  249. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51(9):2826–32.

    Article  CAS  PubMed  Google Scholar 

  250. Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR, Baynes JW. The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. 2003;63(6):2123–33.

    Article  CAS  PubMed  Google Scholar 

  251. Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabet Rev. 1997;5:365–91.

    Google Scholar 

  252. Stitt AW, Jenkins AJ, Cooper ME. Advanced glycation end products and diabetic complications. Expert Opin Investig Drugs. 2002;11(9):1205–23.

    Article  PubMed  Google Scholar 

  253. Brown SM, Smith DM, Alt N, Thorpe SR, Baynes JW. Tissue-specific variation in glycation of proteins in diabetes: evidence for a functional role of amadoriase enzymes. Ann N Y Acad Sci. 2005;1043:817–23.

    Article  CAS  PubMed  Google Scholar 

  254. Monnier VM, Wu X. Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging. Biochem Soc Trans. 2003;31:1349–53.

    Article  CAS  PubMed  Google Scholar 

  255. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Res. 2006;9(2):264–73.

    Article  CAS  PubMed  Google Scholar 

  256. Cohen MP, Sharma K, Jin Y, Hud E, Wu VY, Tomaszewski J, Ziyadeh FN. Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest. 1995;95(5):2338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Mitsuhashi T, Li YM, Fishbane S, Vlassara H. Depletion of reactive advanced glycation endproducts from diabetic uremic sera by a lysozyme-linked matrix. J Clin Invest. 1997;100:847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zheng F, Cai W, Mitsuhashi T, Vlassara H. Lysozyme enhances renal excretion of advanced glycation endproducts in vivo and suppresses adverse age-mediated cellular effects in vitro: a potential AGE sequestration therapy for diabetic nephropathy? Mol Med. 2001;7(11):737–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Li YM, Tan AX, Vlassara H. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a con served motif. Nat Med. 1995;1:1057–61.

    Article  CAS  PubMed  Google Scholar 

  260. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97(1):238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation. 2002;106(22):2827–35.

    Article  CAS  PubMed  Google Scholar 

  262. Santilli F, Vazzana N, Bucciarelli LG, Davì G. Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem. 2009;16(8):940–52.

    Article  CAS  PubMed  Google Scholar 

  263. Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol. 2010;79(10):1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang H, Tasaka S, Shiraishi Y, Fukunaga K, Yamada W, Seki H, Ogawa Y, Miyamoto K, Nakano Y, Hasegawa N, Miyasho T, Maruyama I, Ishizaka A. Role of soluble receptor for advanced glycation end products on endotoxin-induced lung injury. Am J Respir Crit Care Med. 2008;178(4):356–62.

    Article  CAS  PubMed  Google Scholar 

  265. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, Kass DA. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens. 2007;25(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  266. Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol. 2012;47(8):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gurbuz N, Sagdic G, Sanli A, Ciftcioglu A, Bassorgun I, Baykal A, Usta MF. Therapeutic effect of combination of alagebrium (ALT-711) and sildenafil on erectile function in diabetic rats. Int J Impot Res. 2012;24(3):114–21.

    Article  CAS  PubMed  Google Scholar 

  268. Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, Hillege HL, Voors AA, BENEFICIAL Investigators. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13(8):899–908.

    Article  CAS  PubMed  Google Scholar 

  269. Kiland JA, Gabelt BT, Tezel G, Lütjen-Drecoll E, Kaufman PL. Effect of the age cross-link breaker alagebrium on anterior segment physiology, morphology, and ocular age and rage. Trans Am Ophthalmol Soc. 2009;107:146–58.

    PubMed  PubMed Central  Google Scholar 

  270. Coughlan MT, Thallas-Bonke V, Pete J, Long DM, Gasser A, Tong DC, Arnstein M, Thorpe SR, Cooper ME, Forbes JM. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy? Endocrinology. 2007;148(2):886–95.

    Article  CAS  PubMed  Google Scholar 

  271. Freidja ML, Tarhouni K, Toutain B, Fassot C, Loufrani L, Henrion D. The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes. 2012;61(6):1562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Krautwald M, Leech D, Horne S, Steele ML, Forbes J, Rahmadi A, Griffith R, Münch G. The advanced glycation end product-lowering agent ALT-711 is a low-affinity inhibitor of thiamine diphosphokinase. Rejuvenation Res. 2011;14(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  273. Toma L, Sanda GM, Niculescu LS, Deleanu M, Stancu CS, Sima AV. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. Biofactors. 2017;43(5):685–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support for studies discussed herein was provided by the Juvenile Diabetes Research Foundation, American Diabetes Association, National Institutes of Health, Department of Veterans Affairs Merit Review (RK), the Diabetes Research and Wellness Foundation, Lions SightFirst Diabetic Retinopathy Research Program, the National Health and Medical Research Foundation, and National Heart Foundation (Australia). The authors also acknowledge their collaborators, including Professors Timothy Lyons, John Baynes, Susan Thorpe, Maria Lopes-Virella, Gabe Virella, Kristian Hanssen, Bente Kilhovd, David O’Neal, Kerry-Anne Rye, Philip Barter, Michael Davies, Drs Craig Nelson, Andrew Wilson Estelle Nobecourt, Kwok Leung Ong and the DCCT/EDIC Research Group and the FIELD Trial, Ms. Connie Karschimkus and all study participants and site staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej S. Januszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenkins, A.J., Klein, R.L., Semler, A.J., Januszewski, A.S. (2023). Lipoprotein Glycation in Diabetes Mellitus. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics