Skip to main content
Log in

Effect of the nonenzymatic glycosylation of high density lipoprotein-3 on the cholesterol ester transfer protein activity

  • Published:
Lipids

Abstract

This study examines the relationship between high density lipoprotein-3 (HDL-3) glycation and cholesteryl ester transfer mediated by cholesteryl ester transfer protein (CETP). HDL-3 were glycated with various glucose concentrations (0–200 mM) for 3 d at 37°C with sodium cyanoborohydride as reducing agent and antioxidants. About 47% of the lysine residues were glycated in the presence of 200 mM glucose, resulting in an increase in the cholesterol ester (CE) transfer of about 30%. Apparent kinetic parameters [expressed as maximal transfer (appT max) and CE concentration at half of T max (appK H)] of CETP activity with glycated HDL-3 showed conflicting and paradoxical data: an increase in CETP activity associated with a decrease of CETP affinity. These alterations were not due to a change in HDL-3 lipid and protein composition nor to a peroxidative process but were associated with an increase in HDL-3 electronegativity and a decrease of HDL-3 fluidity. This study suggests that glycation modifies the apolipoprotein’s conformation and solvation which are major determinants of interfacial properties of HDL-3. These modifications in turn affect CETP reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apo:

apoprotein

CE:

cholesterol ester

CETP:

cholesterol ester transfer protein

DPH:

1,6-diphenyl-1,3,5-hexatriefe

gHDL-3:

glycated HDL-3

3H-CE:

tritiated cholesterolester

HDL:

high density lipoproteins

K H :

CE-concentration at half T max

LCAT:

lecithin-cholesterol acyl transmellitus

r :

fluorescence anistropy

rHDL:

recombinant HDL

T max :

maximal transfer velocity

TRARS:

throbarbituric acid-reactive strecies

TG:

triacylglyerols

TNBS:

trinitrobenzene-sulfonic acid

UC/PL:

unesterified cholesterol/phospholipid ratio

References

  1. Wieland, O.H. (1983) Protein Modification by Non-Enzymatic Glycosylation: Possible Role in the Development of Late Diabetic Complications, Mol. Cell. Endocrinol 29, 125–131.

    Article  PubMed  CAS  Google Scholar 

  2. Bunn, H.F. (1981) Non-Enzymatic Glycosylation of Protein: Relevance to Diabetes, Am. J. Med 70, 325–330.

    Article  PubMed  CAS  Google Scholar 

  3. Stevens, V.J., Rouzer, C.A., Monnier, V.M., and Cerami, A. (1978) Diabetic Cataract Formation: Potential Role of Glycosylation of Lens Crystallins, Proc. Natl. Acad. Sci USA 75, 2918–2922.

    Article  PubMed  CAS  Google Scholar 

  4. Engerman, R.L., and Kern, T.S. (1986) Hyperglycemia as a Cause of Diabetic Retinopathy, Metabolism 35, 20–23.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, W.J., Malherberg, F., Rothblat, G.H., and Phillips, M.C. (1991) Cholesterol Transport Between Cells and High Density Lipoproteins, Biochim. Biophys. Acta 1085, 273–298.

    PubMed  CAS  Google Scholar 

  6. Duell, P.B., Oram, J.F., and Bierman, E.L. (1991) Nonenzymatic Glycosylation of HDL and Impaired HDL-Receptor-Mediated Cholesterol Efflux, Diabetes 40, 377–383.

    PubMed  CAS  Google Scholar 

  7. Duell, P.B., Oram, J.F., and Bierman, E. (1990) Nonezymatic Glycosylation of HDL Resulting in Inhibition of High-Affinity Binding to Cultured Human Fibroblasts. Diabetes 39, 1257–1263.

    PubMed  CAS  Google Scholar 

  8. Calvo, C., Ulloa, N., DelPozo, R., and Verdugo, C. (1993) Decreased Activation of Lecithin: Cholesterol Acyltransferase by Glycated Apolipoprotein A-I. Eur. J. Clin. Chem. Clin. Biochem. 31, 217–220.

    PubMed  CAS  Google Scholar 

  9. Fournier, N., Myara, I., Atger, V., and Moatti, N. (1995) Reactivity of Lecithin-Cholesterol Acyl Transferase (LCAT) To wards Glycated High-Density Lipoproteins (HDL), Clin. Chim. Acta 234, 47–61.

    Article  PubMed  CAS  Google Scholar 

  10. Tall, A.R. (1986) Plasma Lipid Transfer Proteins, J. Lipid Res. 27, 361–367.

    PubMed  CAS  Google Scholar 

  11. Tall, A.R. (1993) Plasma Cholesteryl Ester Transfer Protein, J. Lipid Res. 34, 1255–1274.

    PubMed  CAS  Google Scholar 

  12. Lagrost, L. (1994) Regulation of Cholesteryl Ester Transfer Protein (CETP) Aetivity: Review of in vitro and in vivo Studies, Biochim. Biophys. Acta 1215, 209–236.

    PubMed  Google Scholar 

  13. Bagdade, J.D., Ritter, M.C., and Subbaiah, P.V. (1991) Accelerated Cholesteryl Ester Transfer in Patients with Insulin-Dependent Diabetes Mellitus, Eur. J. Clin. Invest. 21, 161–167.

    PubMed  CAS  Google Scholar 

  14. Bagdade, J.D., Lane, J.T., Subbaiah, P.V., Otto, M.E., and Ritter, M.C. (1993) Accelerated Cholestetyl Ester Transfer in Non Insulin-Dependent Diabetes Mellitus, Atherosclerosis 104, 69–77.

    Article  PubMed  CAS  Google Scholar 

  15. Ahnadi, C.E., Masmoudi, T., Berthezène, F., and Ponsin, G. (1993) Decreased Ability of High Density Lipoproteins to Transfer Cholesterol Esters in Non-Insulin-Dependent Diabetes Mellitus, Eur. J. Invest. 23, 459–465.

    CAS  Google Scholar 

  16. Van Tol, A. (1993) CETP-Catalysed Transfer of Cholesteryl Esters from HDL to Apo-B-Containing Lipoproteins in Plasma from Diabetic Patients, Eur. J. Clin. Invest 23, 856.

    PubMed  Google Scholar 

  17. Passarelli, M., Catanozi, S., Nakandakare, E.R., Rocha, J.C., Morton, R.E., Shimabukuro, A.F.M., and Oruintao, E.C.R. (1997) Plasma Lipoproteins from Patients with Poorly Controlled Diabetes Mellitus and “in vitro” Glycation of Lipoproteins Enhance the Transfer Rate of Cholesteryl Ester from HDL to Apo-B-Containing Lipoproteins, Diabetologia 40, 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  18. Lagrost, L., Athias, A., Gambert, P., and Lallemant, C. (1994) Comparative Study of Phospholipid Tranfer Activities Mediated by Cholesteryl Ester Transfer Protein and Phospholipid Transfer Protein, J. Lipid Res. 35, 825–835.

    PubMed  CAS  Google Scholar 

  19. Habeeb, A.F.S.A. (1966) Determination of Free Amino Groups in Proteins by Trinitrobenzenesulfonic Acid, Anal. Biochem 14, 328–336.

    Article  PubMed  CAS  Google Scholar 

  20. Sparks, D.L., and Pritchard, P.H. (1989) Transfer of Cholesteryl Ester into High Density Lipoprotein by Cholesteryl Ester Transfer Protein: Effect of HDL Lipid and Apolipoprotein Content. J. Lipid Res. 80, 1491–1498.

    Google Scholar 

  21. Dachet, C., Motta, C., Neufcour, D., and Jacotot, B. (1990) Fluidity Changes and Chemical Composition of Lipoproteins in Type IIa Hyperlipoproteinemia, Biochim. Biophys. Acta 1046, 64–72.

    PubMed  CAS  Google Scholar 

  22. Schachter, D., and Shinitsky, M. (1977) Fluorescence Polarization Studies of Rat Intestinal Microvillus Membrane, J. Clin Invest 59, 536.

    PubMed  CAS  Google Scholar 

  23. Buege, J.A., and Aust, D. (1978) Microsomal Lipid Peroxidation, Methods Enzymol 52, 302–309.

    Article  PubMed  CAS  Google Scholar 

  24. Lowry, O.H., Rosenbrough, N.J., Far, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  25. Masson, D., Athias, A., and Lagrost, L. (1996) Evidence for Electronegativity of Plasma High Density Lipoprotein-3 as One Major Determinant of Human Cholesteryl Ester Transfer Protein Activity, J. Lipid Res. 37, 1579–1590.

    PubMed  CAS  Google Scholar 

  26. Nishida, H.I., Arai, H., and Nishida, T. (1993) Cholesterol Ester Transfer Mediated by Lipid Transfer Protein as Influenced by Changes in the Charge Characteristics of Plasma Lipoproteins, J. Biol. Chem. 268, 16352–16360.

    PubMed  CAS  Google Scholar 

  27. Sparks, D.L., Lund-Kantz, S., and Phillips, M.C. (1992) The Charge and Structural Stability of Apolipoprotein A-I in Discoidal and Spherical Recombinant High Density Lipoprotein Particles, J. Biol. Chem. 267, 25839–25847.

    PubMed  CAS  Google Scholar 

  28. Jonas, A., Covinsky, E., and Sweeny, S.A. (1985) Effects of Amino Group Modification in Discoidal Apolipoprotein A-I-Egg Phosphatidylcholine-Cholesterol Complex on Their Reactions with Lecithin: Cholesterol Acyl Transferase, Biochemistry 24, 3508–3513.

    Article  PubMed  CAS  Google Scholar 

  29. Calyo, C., Talussot, C., Ponsin, G., and Berthezene, F. (1988) Non Enzymatic Glycation of Apolipoprotein A-I Effects on Its Self-Association and Lipid Binding Properties, Biochem. Biophys. Res. Commun. 153, 1060–1067.

    Article  Google Scholar 

  30. Calvo, C., and Verdugo, C. (1992) Association in vivo of Glycated Apolipoprotein A-I with High Density Lipoproteins, Eur. J. Clin. Chem. Biochem. 30, 3–5.

    CAS  Google Scholar 

  31. Nylander, T. (1998) Protein Lipid Interactions, in Studies at Interface Science (Möbius, D., and Miller, R., eds.), Vol. 7, pp. 385–433, Elsevier, Amsterdam.

    Google Scholar 

  32. Sparks, D.L., Davidson, W.S., Lund-Kantz, S., and Phillips, M.C. (1993) Effect of Cholesterol on the Charge and Structure of Apolipoprotein A-I in Recombinant High Density Lipoprotein Particles, J. Biol. Chem. 268, 23250–23257.

    PubMed  CAS  Google Scholar 

  33. Sparks, D.L., Anantharamaiah, G.M., Segrest, J.P., and Phillips, M.C. (1995) Effect of the Cholesterol Content of Reconstituted Lp A-1 on Lecithin: Cholesterol Acyltransferase Activity. J. Biol. Chem. 270, 5151–5157.

    Article  PubMed  CAS  Google Scholar 

  34. Rajaram, O.V., Chan, R.Y.S., and Sawyer, W.H. (1994) Effect of Unesterified Cholesterol on the Acitivity of Cholesteryl Ester Transfer Protein, Biochem. J. 304, 423–430.

    PubMed  CAS  Google Scholar 

  35. Meng Q.H., Bergeron, J., Sparks, Q.-D.L., and Marcel Y.L. (1995) Role of Apolipoprotein A-I in Cholesterol Transfer Between Lipoproteins, J. Biol. Chem. 270, 8588–8596.

    Article  PubMed  CAS  Google Scholar 

  36. Bruneau, C., Laustriat, D., Camberlein, V., Cremel, G., and North, M.L. (1991) Effects of Two Cholesterol Derivatives on Erythrocytes Deformability and Membrane Fluidity on Intact Red Blood Cells and Chosts, Clin. Hemorheol. 11, 583–595.

    Google Scholar 

  37. Mac Ritchie, F. (1990) Chemistry at Interfaces, pp. 24–44, Academic Press, New York.

    Google Scholar 

  38. Winocour, P.D., Watala, C., and Kinglough-Rathbone, R.L. (1992) Membrane Fluidity is Related to the Extent of Glycation of Proteins, but Not to Alterations in the Cholesterol to Phospholipid Molar in Isolated Platelet Membranes from Diabetic and Control Subjects, Thromb. Haemostasis 67, 567–571.

    CAS  Google Scholar 

  39. Pownall, H.J., Massey, J.B., Kusserow, S.K., and Gotto, A.M., Jr. (1978) Kinetics of Lipid-Protein Interactions: Interaction of Apolipoprotein A-I from Human Plasma High Density Lipoproteins with Phospatidylcholines, Biochemistry 17, 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  40. Tall, A.R., and Lange, Y. (1978) Interaction of Cholesterol. Phospholipid and Apolipoprotein in High Density Lipoprotein Recombinants, Biochim. Biophys. Acta 513, 185–197.

    Article  PubMed  CAS  Google Scholar 

  41. Matz, C.E., and Jonas, A. (1982) Micellar Complexes of Human Apolipoprotein A-I with Phosphatidylcholines and Cholesterol Prepared from Cholate-Lipid Dispersions, J. Biol. Chem. 257, 4535–4540.

    PubMed  CAS  Google Scholar 

  42. Massey, I.B., She, H.S., Gotto, A.M., Jr., and Pownall, H.J. (1985) Lateral Distribution of Phospholipid and Cholesterol in Apolipoprotein A-I Recombinant, Biochemistry 24, 7110–7116.

    Article  PubMed  CAS  Google Scholar 

  43. Lemkadem, B., Saulnier, P., Boury, F., Proust, J.E., and Foussard, F. (1999) Adsorption of CETP on Monolayers Formed from HDL3 Extracted Lipids, Colloids Surf B: Biointerfaces, in press.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lemkadem, B., Loiseau, D., Larcher, G. et al. Effect of the nonenzymatic glycosylation of high density lipoprotein-3 on the cholesterol ester transfer protein activity. Lipids 34, 1281–1286 (1999). https://doi.org/10.1007/s11745-999-0479-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0479-0

Keywords

Navigation