Skip to main content
Log in

Lysozyme Enhances Renal Excretion of Advanced Glycation Endproducts In Vivo and Suppresses Adverse AGE-mediated Cellular Effects In Vitro: A Potential AGE Sequestration Therapy for Diabetic Nephropathy?

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Lysozyme (LZ), a host-defense protein, contains an 18 amino-acid domain with high affinity binding for sugar-derived proteins or lipids, called advanced glycation endproducts (AGE), that are implicated in diabetes-and age-dependent complications (DC).

Materials and Methods

A) The effects of LZ on AGE-removal were tested in vivo. LZ was injected (200 ug/day, i.p., ×2 weeks) in non-obese diabetic (NOD), db/db (+/+) mice, and non-diabetic, AGE-infused Sprague-Dawley rats. B) LZ: AGE interactions with macrophage-like T1B-183 cells (Mf) and mesangial cells (MC) were tested in vitro.

Results

A) In NOD mice, LZ reduced the elevated basal serum AGE (sAGE) (p < 0.05), enhanced urinary AGE (uAGE) excretion by ~2-fold (p < 0.01), while it reduced albuminuria (UA), p < 0.005. In db/db mice, LZ infusion also reduced the elevated sAGE (p < 0.05), doubled uAGE excretion (p < 0.05), and decreased UA (p < 0.01). In addition, LZ maintained normal sAGE in normal rats infused with AGE-BSA, as it doubled the urinary AGE (uAGE) clearance (p < 0.01). B) LZ stimulated the uptake and degradation of 125I-labeled AGE-BSA and 25I-human serum AGE by Mf, while suppressing AGE-induced TNFα and IGF-I production. In MC, LZ suppressed the AGE-promoted PDGF-B, α1 type IV collagen, and tenascin mRNA levels, and restored the AGE-suppressed expression and activity of MMP-9, but not MMP-2.

Conclusion

LZ may act to: a) accelerate renal in-vivo AGE clearance, b) suppress macrophage and mesangial cell-specific gene activation in vitro, and c) improve albuminuria due to diabetes. These data suggest that LZ by sequestering AGEs may protect against diabetic renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baynes JW. (1994) Ageing growth factors; a role in diabetic vascular disease? J. Clin. Invest. 94: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bucala R, Vlassara H, Cerami A. (1992) Advanced glycosylation endproducts. In: Post-translational Modifications of Proteins. J.J. Harding and M.J.C. Crabbe, eds., CRC Press, Inc, Boca Raton, FL., pp: 53–59.

    Google Scholar 

  3. Schmidt AM, Yan SD, Wautier J-L, Stern D. (1999) Activation of receptor for advanced glycation endproducts: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation Res. 84: 489–497.

    Article  CAS  PubMed  Google Scholar 

  4. Baynes JW. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–12.

    Article  CAS  PubMed  Google Scholar 

  5. Makita Z, Bucala R, Rayfield EJ, et al. (1994) Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343: 1519–1522.

    Article  CAS  PubMed  Google Scholar 

  6. Weiss MF, Ehrhard P, Kader-Attia FA, et al. (2000) Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney International 57: 2571–2584.

    Article  CAS  PubMed  Google Scholar 

  7. Ankrah N-A, Appiah-Opong R. (1999) Toxicity of low levels of methylglyoxal: depletion of blood glutathione and adverse effects on glucose tolerance in mice. Toxicology Letters 109: 61–67.

    Article  CAS  PubMed  Google Scholar 

  8. Odani H, Shinzato T, Usami J, et al. (1998) Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: evidence for increased oxidative stress in uremia. FEBS Letters 427: 381–385.

    Article  CAS  PubMed  Google Scholar 

  9. Vlassara H, Bucala R, Striker L. (1994) Pathogenic effects of advance glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab. Invest. 70: 138–151.

    CAS  PubMed  Google Scholar 

  10. Witko-Sarsat V, Friedlander M, Nguyen Khoa T, et al. (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J. Immunol. 161: 2524–2532.

    PubMed  CAS  Google Scholar 

  11. Brownlee M, Vlassara H, Kooney A, et al. (1986) Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232: 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  12. Vasan S, Zhang X, Zhang X, et al. (1996) An agent cleaving glucose-derived protein crosslinks in vitro and iin vivo. Nature 382: 275–278.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura S, Makita Z, Ishikawa S. (1997) Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46: 895–899.

    Article  CAS  PubMed  Google Scholar 

  14. He CJ, Li J, Steffes MHM, et al. (1999) Low AGE-diet ameliorates nephropathy in non-obese diabetic (NOD) mice. Diabetes Supplement 1 48: A144.

    Google Scholar 

  15. Zheng F, He C, Li J, Vlassara H. (2000) Retriction of AGE content of food, without lowering protein intake prevents diabetic nephropathy (DN) in mice. Diabetes Supplement I 49: A161.

    Google Scholar 

  16. Sava G. (1996) Pharmacological aspects and therapeutic applications of lysozymes. In: Lysozymes: Model Enzymes in Biochemistry and Biology. P. Jolies, ed., Birkhauser Verlag Basel, Switzerland, pp: 433–449.

    Chapter  Google Scholar 

  17. Li YM, Tan AX, Vlassara H. (1995) Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Nat. Med. 1: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  18. Mitsuhashi T, Li YM, Fishbane S, Vlassara H. (1997) Depletion of reactive advanced glycation endproducts from diabetic uremic sera by a lysozyme-linked matrix. J. Clin. Invest. 100: 847–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Makita Z, Vlassara H, Cerami A, Bucala R. (1992) Immuno-chemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267: 5133–5138.

    CAS  PubMed  Google Scholar 

  20. Mitsuhashi T, Vlassara H, Founds H, Li YM. (1997) Standardizing the Immunological easurement of Advanced Glycation Endproducts Using Normal Human Serum. J. Immunol. Methods 207: 79–88.

    Article  CAS  PubMed  Google Scholar 

  21. Lo TW, Westwood ME, McLellan AC, et al. (1994) Binding and modification of proteins by methylglyoxal under physiological conditions a kinetic and mechanistic study with N-alpha-acetylarginine, N-alpha-acetylcysteine, and N-alpha-acetyllysine, and bovine serum albumin. J. Biol. Chem. 269: 32299–32305.

    PubMed  CAS  Google Scholar 

  22. Ahmed MU, Brinkmann Frye E, Degenhardt TP, et al. (1997) εN-(Carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 324: 565–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li YM, Steffes M, Donnelly T, et al. (1996) Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc. Natl. Acad. Sci. USA 93: 3902–3907.

    Article  CAS  PubMed  Google Scholar 

  24. He C-J, Zheng F, Sabol J, et al. (2000) Differential expression and function of advanced glycation endproduct (AGE)-receptor genes in NOD mouse kidneys; possible role in diabetic and non-diabetic renal disease. Kidney Int. 58: 1931–1940.

    Article  CAS  PubMed  Google Scholar 

  25. Li JJ, Dickson D, Hof PR, et al. (1998) Receptors for advanced glycosylation endproducts in human brain: Role in brain homeostasis. Mol. Med. 4: 46–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doi T, Vlassara H, Kirstein M, et al. (1992) Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via Platelet-Derived Growth Factor. Proc. Natl. Acad. Sci. USA 89: 2873–2877.

    Article  CAS  PubMed  Google Scholar 

  27. Skolnick EY, Yang Z, Makita Z, et al. (1991) Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J. Exp. Med. 174: 931–939.

    Article  Google Scholar 

  28. Elliot S, Striker L, Hattori M, et al. (1993) Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocr. J. 133: 1783–1788.

    Article  CAS  Google Scholar 

  29. Peten EP, Striker L, Garcia-Perez A, et al. (1993) Studies by competitive PCR of glomerulosclerosis in growth hormone transgenic mice. Kidney Int. 43: S55–S58.

    Google Scholar 

  30. Lenz O, Eliot SE, Stetler-Stevenson WG. (2000) Matrix met-alloproteinases in renal development. J. Am. Soc. Nephrol. 11: 574–581.

    PubMed  CAS  Google Scholar 

  31. Jacot TA, Striker GE, Stetler-Stevenson M, et al. (1996) Mesangial cells from transgenic mice with progressive glomerulosclerosis exhibit stable, phenotypic changes including undetectable MMP-9 and increased type IV collagen. Lab. Invest. 75: 791–790.

    PubMed  CAS  Google Scholar 

  32. Ziyadeh FN, Hoffman BB, Han DC, et al. (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal-TGFβ antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 97: 8015–8020.

    Article  CAS  PubMed  Google Scholar 

  33. Gugliucci A, Bendayan M. (1996) Renal fate of circulating advanced glycation end products (AGE): evidence for reabsorp-tion and catabolism of AGE peptides by renal proximal tubular cells. Diabetologia 39: 149–160.

    Article  CAS  PubMed  Google Scholar 

  34. Gugliucci A, Bendayan M. (1995) Reaction of advanced glycation endproducts with renal tissue from normal and streptozotocin-induced diabetic rats: an ultrastructural study using colloidal gold cytochemistry. J. Histochem. Cytochem. 43: 591–600.

    Article  CAS  PubMed  Google Scholar 

  35. Haas M, De Zeeuw D, van Zanten A, Meijer DKF. (1993) Quantification of renal low-molecular-weights protein handling in the intact rat. Kidney Int. 43: 949–954.

    Article  CAS  PubMed  Google Scholar 

  36. Haas, Kluppel ACA, Wartna ES, et al. (1997) Drug-targeting to the kidney: Renal delivery and degradation of a naproxenlysozyme conjugate in vivo. Kidney Int. 52: 1693–1699.

    Article  CAS  PubMed  Google Scholar 

  37. Kislinger T, Fu C, Huber B, et al. (1999) εN-(Carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 274: 31740–31749.

    Article  CAS  PubMed  Google Scholar 

  38. Vlassara H, Brownlee M, Cerami A. (1986) Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J. Exp. Med. 164: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  39. Vlassara H, Bucala R, Stitt, A. (1998). Vascular complications of diabetes and the role of advanced glycosylation end products. In: An Introduction to Vascular Biology. A. Halliday, et al., eds., Cambridge University Press, UK, pp: 173–194.

    Google Scholar 

  40. Vlassara H, Brownlee M, Manogue KR, et al. (1988) Cachectin/tnf and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240: 1546–1548.

    Article  CAS  PubMed  Google Scholar 

  41. Thornalley PJ. (1996) Advanced glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol. & Metabolism 3: 149–166.

    CAS  Google Scholar 

  42. Shinohara M, Thornalley PJ, Giardino I, et al. (1998) Over-expression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101(5): 1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang CW, Vlassara H, Striker GE, et al. (1995) Administration of AGEs in vivo induces genes implicated in diabetic glomerulosclerosis. Kidney. Int. Suppl. 49: 55–58.

    Google Scholar 

  44. Takada K, Ohno N, Yadomae T. (1994) Binding of lysozyme to lipopolysaccharide suppresses-tumor necrosis factor production in vivo. Infection and Immunity 62: 1171–1175.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Lee-Huang S, Huang PL, Sun Y, et al. (1999) Lysozyme and RNAses as anti-HIV components in β-core preparations of human chorionic gonadotropin. Proc. Natl. Acad. Sci, USA 96: 2678–2681.

    Article  CAS  PubMed  Google Scholar 

  46. Chen F, Crandall J, Zhu L, et al. (2000) Overexpression of human recombinant lysozyme (huLZ) by macrophages leads to enhanced glycotoxin uptake and clearance without cell activation: A new model approach for the prevention of diabetic complications. Diabetes Supplement 220: A54.

    Google Scholar 

  47. Park LKG, Raman KG, Lee Y, et al. (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med. 4: 1025–1031.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an NIH grant (DK57126) and a program project grant from the Juvenile Diabetes Research Foundation (JDRF-4-1999-697). We thank Ms. Ina Katz for invaluable editorial assistance and Dr. Michael A. Yamin for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Vlassara.

Additional information

Contributed by R. Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Cai, W., Mitsuhashi, T. et al. Lysozyme Enhances Renal Excretion of Advanced Glycation Endproducts In Vivo and Suppresses Adverse AGE-mediated Cellular Effects In Vitro: A Potential AGE Sequestration Therapy for Diabetic Nephropathy?. Mol Med 7, 737–747 (2001). https://doi.org/10.1007/BF03401963

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401963

Keywords

Navigation