Skip to main content

Amino Acids Other Than Proline and Their Participation in Abiotic Stress Tolerance

  • Chapter
  • First Online:
Compatible Solutes Engineering for Crop Plants Facing Climate Change

Abstract

Ensuring food supply to the increasing global population has remained a daunting task for agriculturalists and plant scientists, and abiotic stress only exacerbates this problem. Abiotic stress adversely affects many aspects of plant biology that predominantly govern growth and yield. Continued research efforts have revealed that plant response to abiotic stress is very complex and involves precise changes in several physiological, metabolic, and molecular facets. One of the basic and ubiquitous responses includes the synthesis and accumulation of compatible solutes. Amino acids are primary metabolites that, besides other functions, act as compatible solutes and play decisive roles in the cell life under various abiotic stresses. Although, proline has been vastly studied for its role as a compatible solute in mitigating abiotic stress effects in plants, other amino acids (both proteinogenic and nonproteinogenic) have received considerably less attention in this context. This chapter provides the current state of knowledge of the role of amino acids, excluding proline, in abiotic stress tolerance of crops. It provides a comprehensive overview of how these crucial metabolites improve the abiotic stress tolerance of crop plants when overproduced (using transgenic approaches) or supplied exogenously. Further, the potential of amino acid–based biostimulants in improving the biochemical, physiological, and molecular responses regulating plant adaptation and tolerance to various abiotic stresses is described. Based on the information in this chapter, it is deduced that proline is unquestionably not the only amino acid accumulated by plants in response to different abiotic stresses, and that genomic resources and related pathways associated with the other amino acids must be characterized to further our understanding of crop abiotic stress tolerance. This will facilitate the genetic engineering efforts for the improvement of abiotic stress tolerance and productivity of crop plants for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  PubMed  CAS  Google Scholar 

  • Aghdam MS, Moradi M, Razavi F, Rabiei V (2019) Exogenous phenylalanine application promotes chilling tolerance in tomato fruits during cold storage by ensuring supply of NADPH for activation of ROS scavenging systems. Sci Hortic 246:818–825

    Article  CAS  Google Scholar 

  • Ahmad B, Zaid A, Sadiq Y, Bashir S, Wani SH (2019) Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. In: Plant abiotic stress tolerance. Springer, Cham, pp 273–290

    Chapter  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442

    Article  PubMed  CAS  Google Scholar 

  • Akladious SA, Abbas SM (2013) Alleviation of sea water stress on tomato plants by foliar application of aspartic acid and glutathione. Bangladesh J Bot 42:31–44

    Article  Google Scholar 

  • Akladious SA, Hanafy RS (2018) Alleviation of oxidative effects of salt stress in white lupine (Lupinus termis L.) plants by foliar treatment with L-arginine. J Anim Plant Sci 28:165–176

    CAS  Google Scholar 

  • Albrecht G, Mustroph A, Theodore C (2004) Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physiol Plant 120:93–104

    Article  PubMed  CAS  Google Scholar 

  • Ali Q, Athar H, Haider M, Shahid S, Aslam N, Shehzad F, Naseem J, Ashraf R, Ali A, Hussain S (2019) Role of amino acids in improving abiotic stress tolerance to Plants. In: Plant tolerance to environmental stress, pp 175–204. https://doi.org/10.1201/9780203705315-12

    Chapter  Google Scholar 

  • Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J et al (2013) Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. Plant Cell 25:4827–4843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • António C, Päpke C, Rocha M, Diab H, Limami AM, Obata T et al (2016) Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol 170:43–56

    Article  PubMed  CAS  Google Scholar 

  • Antunes F, Aguilar M, Pineda M, Sodek L (2008) Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Physiol Plant 133:736–743

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Gomes Filho E (2009) Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes. J Plant Interact 4:137–144

    Article  CAS  Google Scholar 

  • Bakry BA, Ibrahim FM, Abdallah MM, El-Bassiouny HM (2016) Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. Int J PharmTech Res 9:276–287

    CAS  Google Scholar 

  • Barand A, Nasibi F, ManouchehriKalantari K (2015) The effect of arginine pretreatment in the increase of cold tolerance in Pistacia vera L. in vitro. Russ Agric Sci 41:340–346

    Article  Google Scholar 

  • Barnaby JY, Fleisher DH, Singh SK, Sicher RC, Reddy VR (2019) Combined effects of drought and CO2 enrichment on foliar metabolites of potato (Solanum tuberosum L.) cultivars. J Plant Interact 14:110–118

    Article  CAS  Google Scholar 

  • Batista-Silva W, Heinemann B, Rugen N, Nunes-Nesi A, Araújo WL, Braun HP, Hildebrandt TM (2019) The role of amino acid metabolism during abiotic stress release. Plant Cell Environ 42:1630–1644

    Article  PubMed  CAS  Google Scholar 

  • Batlang U, Ambavaram M, Krishnan A, Pereira A (2014) Drought responsive genes and their functional terms identified by GS FLX Pyro sequencing in maize. Maydica 59:306–314

    Google Scholar 

  • Bauer D, Biehler K, Fock H, Carrayol E, Hirel B, Migge A, Becker TW (1997) A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato. Physiol Plant 99:241–248

    Article  CAS  Google Scholar 

  • Beato VM, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A (2014) Boron deficiency increases expressions of asparagine synthetase, glutamate dehydrogenase and glutamine synthetase genes in tobacco roots irrespective of the nitrogen source. Soil Sci Plant Nutr 60:314–324

    Article  CAS  Google Scholar 

  • Bentley R (1990) The skimate pathway-A metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Biswas AK, De B (2018) Metabolomics analysis of Cajanus cajan L. seedlings unravelled amelioration of stress induced responses to salinity after halopriming of seeds. Plant Signal Behav 13:e1489670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaszczyk A, Brodzik R, Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J 20:237–243

    Article  PubMed  CAS  Google Scholar 

  • Blume C, Ost J, Muhlenbruch M, Peterhansel C, Laxa M (2019) Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana. PLoS ONE 14:e0210342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botta A (2013) Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic. https://doi.org/10.17660/ActaHortic.2013.1009.1

  • Bown AW, MacGregor KB, Shelp BJ (2006) Gamma aminobutyrate: defense against invertebrate pests? Trends Plant Sci 11:424–427

    Article  PubMed  CAS  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  PubMed  CAS  Google Scholar 

  • Campomanes B, Porter CA (2016) Amino acids and their role in drought resistance. Agriculture (Philippines). https://www.agriculture.com.ph/2018/07/19/amino-acids-and-their-role-in-drought-resistance/

  • Carillo P, Grazia Annunziata M, Pontecorvo G, Fuggi A, Woodrow P (2011a) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants – mechanisms and adaptations. InTech, Rijeka, pp 21–38

    Google Scholar 

  • Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG et al (2011b) Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. Funct Plant Biol 38:139–150

    Article  PubMed  CAS  Google Scholar 

  • Casartelli A, Riewe D, Hubberten HM, Altmann T, Hoefgen R, Heuer S (2018) Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicum esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Chai F, Liu W, Xiang Y, Meng X, Sun X, Cheng C et al (2019) Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic Res 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  PubMed  CAS  Google Scholar 

  • Cho C, Lee H, Chung E, Kim KM, Heo JE, Kim J et al (2007) Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Mol Cells 23:280

    PubMed  CAS  Google Scholar 

  • Chung E, Kim KM, Heo JE, Cho CW, Lee SW, Lee JH (2009) Molecular characterization of mungbean peroxisomal alanine glyoxylate aminotransferase gene induced by low temperature stress. Genes Genom 31:11–18

    Article  CAS  Google Scholar 

  • Cohen H, Israeli H, Matityahu I, Amir R (2014) Seed-specific expression of a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE in Arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. Plant Physiol 166:1575–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A. Love amphiploid. Plant Physiol 108:1715–1724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753

    Article  PubMed  CAS  Google Scholar 

  • Curtis TY, Powers SJ, Wang R, Halford NG (2018) Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. Food Chem 239:304–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Rocha IM, Vitorello VA, Silva JS, Ferreira-Silva SL, Viégas RA, Silva EN, Silveira JA (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  PubMed  CAS  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Rep 30:1088–1101

    Article  CAS  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21

    Article  PubMed Central  CAS  Google Scholar 

  • Dasgan HY, Kuşvuran S, Abak K, Leport L, Larher F, Bouchereau A (2009) The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo L.). Plant Soil Environ 55:51–57

    Article  CAS  Google Scholar 

  • Davies DD (1982) Physiological aspects of protein turn over. Encycl Plant Physiol 45:481–487

    Google Scholar 

  • De Leonardis AM, Fragasso M, Beleggia R, Ficco DB, De Vita P, Mastrangelo AM (2015) Effects of heat stress on metabolite accumulation and composition, and nutritional properties of durum wheat grain. Int J Mol Sci 16:30382–30404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vasconcelos AC, Chaves LH (2019) Biostimulants and their role in improving plant growth under abiotic stresses. In: Biostimulants in plant science. IntechOpen. https://doi.org/10.5772/intechopen.88829

    Chapter  Google Scholar 

  • Deo R, Barvkar V, Nadaf A, Mundhe S, Kadoo N (2019) Integrative omics analysis in Pandanus odorifer (Forssk.) Kuntze reveals the role of Asparagine synthetase in salinity tolerance. Sci Rep 9:932

    Article  CAS  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  CAS  Google Scholar 

  • Diab H, Limami AM (2016) Reconfiguration of N metabolism upon hypoxia stress and recovery: roles of alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH). Plants 5:25

    Article  PubMed Central  CAS  Google Scholar 

  • Díaz P, Betti M, Sánchez DH, Udvardi MK, Monza J, Márquez AJ (2010) Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol 188:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Dinari A, Niazi A, Afsharifar AR, Ramezani A (2013) Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA AFLP approach. PLoS ONE 8:e52757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager MC, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    Article  PubMed  CAS  Google Scholar 

  • Domı́nguez-Solı́s JR, Gutiérrez-Alcalá G, Romero LC, Gotor C (2001) The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  PubMed  Google Scholar 

  • Drakeford DR, Mukherjee I, Reid DM (1985) Some early responses of Helianthus annuus L. to flooding: I. The effects of flooding on the uptake and leakage of ‘non-electrolytes’ by roots. J Exp Bot 36:1705–1715

    Article  CAS  Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, Wang T, Li FM (2012) β-aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J Exp Bot 63:4849–4860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K (2007) Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot 58:3309–3321

    Article  PubMed  CAS  Google Scholar 

  • Dumont E, Fontaine V, Vuylsteker C, Sellier H, Bodèle S, Voedts N et al (2009) Association of sugar content QTL and PQL with physiological traits relevant to frost damage resistance in pea under field and controlled conditions. Theor Appl Genet 118:1561–1571

    Article  PubMed  CAS  Google Scholar 

  • El-Samad A, Shaddad MA, Barakat N (2010) The role of amino acids in improvement in salt tolerance of crop plants. J Stress Physiol Biochem 6:25–37

    Google Scholar 

  • Elshintinawy F, Elshourbagy MN (2001) Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biol Plant 44:541–545

    Article  CAS  Google Scholar 

  • Farooq H, Asghar HN, Khan MY, Saleem M, Zahir ZA (2015) Auxin-mediated growth of rice in cadmium-contaminated soil. Turk J Agric For 39:272–276

    Article  CAS  Google Scholar 

  • Filiz E, Cetin D, Akbudak MA (2019) Aromatic amino acids biosynthesis genes identification and expression analysis under salt and drought stresses in Solanum lycopersicum L. Sci Hortic 250:127–137

    Article  CAS  Google Scholar 

  • Fouad WM, Rathinasabapathi B (2006) Expression of bacterial L-aspartate-α-decarboxylase in tobacco increases β-alanine and pantothenate levels and improves thermotolerance. Plant Mol Biol 60:495–505

    Article  PubMed  CAS  Google Scholar 

  • Francesca S, Arena C, Hay Mele B, Schettini C, Ambrosino P, Barone A, Rigano MM (2020) The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10:363

    Article  CAS  Google Scholar 

  • Fu P, Wang W, Hou L, Liu X (2013) Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Soc Bot Pol 82:295–302

    Article  CAS  Google Scholar 

  • Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernández G (2001) Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J Exp Bot 52:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Fukutoku Y, Yamada Y (1981) Diurnal changes in water potential and free amino acid contents of water-stressed and non-stressed soybean plants. Soil Sci Plant Nutr 27:195–204

    Article  CAS  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganie SA, Ahammed GJ, Wani SH (2020) Vascular plant one zinc-finger (VOZ) transcription factors: novel regulators of abiotic stress tolerance in rice (Oryza sativa L.). Genet Resour Crop Evol 67:799–807

    Article  CAS  Google Scholar 

  • Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    Article  PubMed  CAS  Google Scholar 

  • Ganie SA, Ahammed GJ (2021) Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. Plant Cell Rep 40:437–459

    Google Scholar 

  • Ganie SA, Reddy AS (2021) Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. Biology 10:309

    Google Scholar 

  • Ganie SA, Wani SH, Henry R, Hensel G (2021) Improving rice salt tolerance by precision breeding in a new era. Curr Opin Plant Biol 60:101996

    Google Scholar 

  • Gao Y, de Bang TC, Schjoerring JK (2019) Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol J 17:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot 6:2365–2378

    Article  CAS  Google Scholar 

  • Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID et al (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  PubMed  CAS  Google Scholar 

  • Gavelienė V, Pakalniškytė L, Novickienė L (2014) Regulation of proline and ethylene levels in rape seedlings for freezing tolerance. Cent Eur J Biol 9:1099–1107

    Google Scholar 

  • Gavelienė V, Pakalniškytė L, Novickienė L, Balčiauskas L (2018) Effect of biostimulants on cold resistance and productivity formation in winter rapeseed and winter wheat. Irish J Agric Food Res 57:71–83

    Article  CAS  Google Scholar 

  • Ghahremani M, Ghanati F, Bernard F, Azad T, Gholami M, Safari M (2014) Ornithine-induced increase of proline and polyamines contents in tobacco cells under salinity conditions. Aust J Crop Sci 8:91

    Google Scholar 

  • Ghahremani M, Ghanati F, Bernard F, Gholami M, Azad T (2013) Effects of exogenous ornithine enantiomers on tobacco cells under salinity conditions. Prog Biol Sci 3:100–107

    Google Scholar 

  • Gilbert GA, Gadush MV, Wilson C, Madore MA (1998) Amino acid accumulation in sink and source tissues of Coleus blumei Benth., during salinity stress. J Exp Bot 49:107–114

    Article  CAS  Google Scholar 

  • Goel P, Singh AK (2015) Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS ONE 10:e0143645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X et al (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563–3575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouesbet G, Blanco C, Hamelin J, Bernard T (1992) Osmotic adjustment in Brevibacterium ammoniagenes: pipecolic acid accumulation at elevated osmolalities. J Gen Microbiol 138:959–965

    Article  CAS  Google Scholar 

  • Gouveia GC, Binotti FF, Costa E (2017) Priming effect on the physiological potential of maize seeds under abiotic stress. Pesqui Agropecu Trop 47:328–335

    Article  Google Scholar 

  • Guan M, de Bang TC, Pedersen C, Schjoerring JK (2016) Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity. Plant Physiol 171:1921–1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H (2017) Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol 17:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N et al (2012) Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 12:543–563

    Article  PubMed  CAS  Google Scholar 

  • Hacham Y, Matityahu I, Amir R (2017) Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress. Physiol Plant 160:242–252

    Article  PubMed  CAS  Google Scholar 

  • Haider MS, Zhang C, Pervaiz T, Zheng T, Zhang C, Lide C, et al (2016) Gene regulation mechanism in drought-responsive grapevine leaves as revealed by transcriptomic analysis. bioRxiv, 065136.

    Google Scholar 

  • Halford NG, Curtis TY, Chen Z, Huang J (2015) Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J Exp Bot 66:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Muttucumaru N, Powers SJ, Gillatt PN, Hartley L, Elmore JS, Mottram DS (2012) Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation. J Agric Food Chem 60:12044–12055

    Article  PubMed  CAS  Google Scholar 

  • Hamid ZH, Idan MA (2019) Effect of arginine on growth and yield of tomato plant (Lycopersicon esculentum) under drought stress. Plant Arch 19:4441–4444

    Google Scholar 

  • Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M (2018) Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants 24:993–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan AM, Mohamed HE (2019) L-arginine pretreatment enhances drought resistance of sunflower (Helianthus annuus L.) plants by increase in polyamines content. J Plant Growth Regul 38:600–605

    Article  CAS  Google Scholar 

  • Hassanein RA, El-Khawas SA, Ibrahim SK, El-Bassiouny HM, Mostafa HA, Abdel-Monem AA (2013) Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pak J Bot 45:111–118

    CAS  Google Scholar 

  • Haupt-Herting SI, Fock HP (2002) Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Ann Bot 89:851–859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heis MD, Ditmer EM, de Oliveira LA, Frazzon AP, Margis R, Frazzon J (2011) Differential expression of cysteine desulfurases in soybean. BMC Plant Biol 11:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrera-Rodríguez MB, Pérez-Vicente R, Maldonado JM (2007) Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol Biochem 45:33–38

    Article  PubMed  CAS  Google Scholar 

  • Homer FA, Reeves RD, Brooks RR (1997) The possible involvement of amino acids in nickel chelation in some nickel accumulating plants. Curr Top Phytochem 14:31–33

    Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  PubMed  CAS  Google Scholar 

  • Hozayn M, El-Monem AA, El-Hamid EM, Qados AA (2013) Amelioration of salinity stress in mungbean (Vigna radiate L). plant by soaking in arginine. J Appl Sci Res 9:393–401

    CAS  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plan 46:73–78

    Article  CAS  Google Scholar 

  • Huang M, Zhang H, Zhao C, Chen G, Zou Y (2019) Amino acid content in rice grains is affected by high temperature during the early grain-filling period. Sci Rep 9:1–7

    Google Scholar 

  • Huang T, Tohge T, Lytovchenko A, Fernie AR, Jander G (2010) Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana. Plant J 63:823–835

    Article  PubMed  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Hameed A, Hafeez F et al (2018) Role of zinc-lysine on growth and chromium uptake in rice plants under Cr stress. J Plant Growth Regul 37:1413–1422

    Article  CAS  Google Scholar 

  • Hussein MM, Faham SY, Alva AK (2014) Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. J Agric Sci 6:41–51

    Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol 49:1003–1015

    Article  CAS  Google Scholar 

  • James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M et al (2018) Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 9:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Jannesari M, Ghehsareh AM, Fallahzade J (2016) Response of tomato plant towards amino acid under salt stress in a greenhouse system. J Environ Sci Technol 9:131–139

    Article  CAS  Google Scholar 

  • Januškaitienė I, Kacienė G (2017) The effect of foliar spray fertilizers on the tolerance of Hordeum vulgare to UV-B radiation and drought stress. Cereal Res Commun 45:390–400

    Article  CAS  Google Scholar 

  • Janzik I, Preiskowski S, Kneifel H (2005) Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L. cv. Bel W3). Planta 223:20–27

    Article  PubMed  CAS  Google Scholar 

  • Jia XM, Zhu YF, Hu Y, Zhang R, Cheng L, Zhu ZL et al (2019) Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic Res 6:1–9

    Article  CAS  Google Scholar 

  • Jiang L, Yang RZ, Lu YF, Cao SQ, Ci LK, Zhang JJ (2012) β-Aminobutyric acid mediated tobacco tolerance to potassium deficiency. Russ J Plant Physiol 59:781–787

    Article  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2015) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:277–289

    Article  PubMed  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci 23:242–254

    Article  Google Scholar 

  • Joshi V, Fernie AR (2017) Citrulline metabolism in plants. Amino Acids 49:1543–1559

    Article  PubMed  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  PubMed  CAS  Google Scholar 

  • Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I et al (2009b) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60:1859–1871

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalamaki MS, Merkouropoulos G, Kanellis AK (2009a) Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal Behav 4:1099–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamran M, Shahbaz M, Ashraf M, Akram NA (2009) Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak J Bot 41:621–632

    Google Scholar 

  • Kan CC, Chung TY, Juo YA, Hsieh MH (2015) Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics 16:731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang Z, Babar MA, Khan N, Guo J, Khan J, Islam S et al (2019) Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS ONE 14:e0213502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro EM, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41:864–873

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157

    Article  PubMed  CAS  Google Scholar 

  • Kaya C, Aydemir S, Sonmez O, Ashraf M, Dikilitas M (2013) Regulation of growth and some key physiological processes in salt-stressed maize (Zea mays L.) plants by exogenous application of asparagine and glycerol. Acta Bot Croat 72:157–168

    Article  CAS  Google Scholar 

  • Kendziorek M, Paszkowski A, Zagdańska B (2012) Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings. Plant Cell Rep 31:1105–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalil SI, El-Bassiouny HM, Hassanein RA, Mostafa HA, El-Khawas SA, El-Monem AA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3:1517–1526

    CAS  Google Scholar 

  • Khan MS, Khraiwesh B, Pugalenthi G, Gupta RS, Singh J, Duttamajumder SK, Kapur R (2014) Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.). FEBS Open Bio 4:533–541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M, Ismail SMA, Babar MA (2020) Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak J Bot 52:2

    Article  Google Scholar 

  • Khan S, Yu H, Li Q, Gao Y, Sallam BN, Wang H, Liu P, Jiang W (2019) Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 9:266

    Article  CAS  Google Scholar 

  • Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Kumar V, Khare T, Shaikh S, Wani SH (2018) Compatible solutes and abiotic stress tolerance in plants. In: Metabolic adaptations in plants during abiotic stress, vol 3. Taylor & Francis (CRC Press), Boca Raton, pp 213–220

    Chapter  Google Scholar 

  • Kumari S, nee Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    Article  PubMed  CAS  Google Scholar 

  • Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S et al (2009) Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50:106–117

    Article  PubMed  Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    Article  CAS  Google Scholar 

  • Kusvuran S, Dasgan HY, Abak K (2013) Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. Sci World J ID 253414.

    Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 1–47

    Google Scholar 

  • Lea PJ, Sodek L, Parry MA, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Lee HJ, Abdula SE, Jang DW, Park SH, Yoon UH, Jung YJ et al (2013) Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep 32:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Kwon SJ, Hwang JE, Han SM, Jung I, Kim JB et al (2016) Genome-wide expression analysis of a rice mutant line under salt stress. Genet Mol Res 15:gmr15048833

    Article  Google Scholar 

  • Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA (2015) Transcripts and microRNAs responding to salt stress in Musa acuminata Colla (AAA Group) cv. Berangan roots. PLoS ONE 10:e0127526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD, Hausler RE (1995) The regulation and control of photorespiration. J Exp Bot 46:1397–1414

    Article  CAS  Google Scholar 

  • Lei P, Xu Z, Ding Y, Tang B, Zhang Y, Li H et al (2015) Effect of poly (γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings (Brassica napus L.) under cold stress. J Agric Food Chem 63:10399–10406

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang M, Zhang F, Xu Y, Chen X, Qin X, Wen X (2016) Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties. Plant Physiol Biochem 102:62–69

    Article  PubMed  CAS  Google Scholar 

  • Lightfoot DA, Mungur R, Ameziane R, Nolte S, Long L, Bernhard K et al (2007) Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica 156:103–116

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (1995) NaCl stress in rice seedlings: effects of L-proline, glycinebetaine, L-and D-asparagine on seedling growth. Biol Plant 37:305

    Article  CAS  Google Scholar 

  • Lin HH, Lin KH, Syu JY, Tang SY, Lo HF (2016) Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. J Plant Biochem Biotechnol 25:87–96

    Article  Google Scholar 

  • Liu W, Xiang Y, Zhang X, Han G, Sun X, Sheng Y et al (2019) Over-expression of a maize N-acetylglutamate kinase gene (ZmNAGK) improves drought tolerance in tobacco. Front Plant Sci 9:1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Kou J, Takano T, Liu S, Bu Y (2017) Overexpression of AtGS1.5 gene improves salt stress tolerance during seed germination in Arabidopsis thaliana. Mol Soil Biol 8:1–6

    Google Scholar 

  • López-Martín MC, Becana M, Romero LC, Gotor C (2008) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol 147:562–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B et al (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  PubMed  CAS  Google Scholar 

  • Mahmood S, Hussain I, Ashraf A, Parveen A, Javed S, Iqbal M, Afzal B (2017) Tyrosine-priming modulates phenylpropanoid pathway in maize grown under different pH regimes. Cereal Res Commun 45:214–224

    Article  CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Khan M, Nahar K, Fujita M (2020) β-aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification. Plants 9:241

    Article  PubMed Central  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Mayer RR, Cherry JH, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94:796–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mellacheruvu S, Talakayala A, Garladinne M (2019) Crop improvement of cereals through manipulation of signaling pathways in response to drought stress. In: Plant signaling molecules. Woodhead Publishing, pp 125–139

    Chapter  Google Scholar 

  • Mills SJ (2014) Potential of exogenous L-amino acids in salinity stress alleviation during germination and early post-germinative seedling growth of Lactuca sativa L. M.Sc. thesis submitted to University of Canterbury

    Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N et al (2019) Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E coli and Arabidopsis. Front Plant Sci 10:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyashita Y, Good AG (2008) Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol 49:92–102

    Article  PubMed  CAS  Google Scholar 

  • Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  PubMed  CAS  Google Scholar 

  • Moulin M, Deleu C, Larher F, Bouchereau A (2006) The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. Plant Physiol Biochem 44:474–482

    Article  PubMed  CAS  Google Scholar 

  • Mozafari H, Asrar Z, Rezanejad F, Pourseyedi S, Yaghoobi MM (2014) Oxidative stress tolerance by calcium and histidine in two tomato cultivars under nickel stress. J Stress Physiol Biochem 10:102–124

    Google Scholar 

  • Muench DG, Christopher ME, Good AG (1998) Cloning and expression of a hypoxic and nitrogen inducible maize alanine aminotransferase gene. Physiol Plant 103:503–512

    Article  CAS  Google Scholar 

  • Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R (2004) Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast 21:303–312

    Article  PubMed  CAS  Google Scholar 

  • Müller S (2017) Plant thermotolerance: the role of heat stress-induced triacylglycerols in Arabidopsis thaliana. Doctoral thesis, Julius-Maximilians-Universität Würzburg.

    Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muttucumaru N, Powers SJ, Elmore JS, Mottram DS, Halford NG (2015) Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. J Agric Food Chem 63:2566–2575

    Article  PubMed  CAS  Google Scholar 

  • Naidu BP (1987) Variability in the accumulation of amino acids and glycinebetaine in wheat and barley under environmental stress. Doctoral dissertation. The University of Adelaide.

    Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nasibi F, Barand A, Kalantari KM, Rezanejad F (2013a) The effect of arginine pretreatment on germination, growth and physiological parameters in the increase of low temperature tolerance in Pistacia vera L. in vitro culture. Int J Agric Crop Sci 5:1918

    Google Scholar 

  • Nasibi F, Heidari T, Asrar Z, Mansoori H (2013b) Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in Hyoscyamus niger. J Soil Sci Plant Nutr 13:680–689

    Google Scholar 

  • Nasibi F, Kalantari KM, Barand A (2014) Effect of seed pre-treatment with L-arginine on improvement of seedling growth and alleviation of oxidative damage in canola plants subjected to salt stress. Iran J Plant Physiol 5:1217–1224

    Google Scholar 

  • Nasibi F, Kalantari KM, Zanganeh R, Nejad JM (2015) Effect of seed priming with arginine and cysteine on growth and some biochemical characteristics in wheat plants under salt stress. Plant Stress Physiol 1:43–52

    Google Scholar 

  • Nasibi F, Yaghoobi MM, Kalantari KM (2011) Effect of exogenous arginine on alleviation of oxidative damage in tomato plant underwater stress. J Plant Interact 6:291–296

    Article  CAS  Google Scholar 

  • Navrotskyi S (2016) Studies on asparagine in Nebraska wheat and other grains. Dissertations, Theses, & Student Research in Food Science and Technology. 76. http://digitalcommons.unl.edu/foodscidiss/76

  • Ning H, Zhang C, Yao Y, Yu D (2010) Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnol Lett 32:557–564

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126:973–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noman A, Ali Q, Maqsood J, Iqbal N, Javed MT, Rasool N, Naseem J (2018) Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere 195:175–189

    Article  PubMed  CAS  Google Scholar 

  • Noroozlo YA, Souri MK, Delshad M (2019) Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agric 4:164–172

    Article  Google Scholar 

  • Obata T, Matthes A, Koszior S, Lehmann M, Araújo WL, Bock R, Sweetlove LJ, Fernie AR (2011) Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochem 72:1081–1091

    Article  CAS  Google Scholar 

  • Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S et al (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169:2665–2683

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ogura Y, Ishihara A, Iwamura H (2001) Induction of hydroxycinnamic acid amides and tryptophan by jasmonic acid, abscisic acid and osmotic stress in barley leaves. Z Naturforsch C J Biosci 56:193–202

    Article  PubMed  CAS  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J et al (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy A, Savka MA, Hudson AO (2019) The synthesis and role of β-alanine in plants. Front Plant Sci 10:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquer F, Ochsner U, Zarn J, Keller B (2006) Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, cinidon-ethyl and tribenuron-methyl in wheat. Pest Manag Sci 62:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Iqbal M, Akram MS, Parveen A, Ali HM (2016) Induction of cadmium stress tolerance in Triticum aestivum L. by alfalfa leaf extract. Appl Ecol Environ Res 14:121–136

    Article  Google Scholar 

  • Petrozza A, Santaniello A, Summerer S, Di Tommaso G, Di Tommaso D, Paparelli E et al (2014) Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci Hortic 174:185–192

    Article  CAS  Google Scholar 

  • Pinheiro C, Passarinho JA, Ricardo CP (2004) Effect of drought and rewatering on the metabolism of Lupinus albus organs. J Plant Physiol 161:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Rannou O, Ricoult C, Boutet-Mercey S, Maia-Grondard A, Limami AM (2011) Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during postgermination. J Exp Bot 62:605–615

    Article  PubMed  CAS  Google Scholar 

  • Popko M, Michalak I, Wilk R, Gramza M, Chojnacka K, Górecki H (2018) Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23:470

    Article  PubMed Central  CAS  Google Scholar 

  • Postles J, Curtis TY, Powers SJ, Elmore JS, Mottram DS, Halford NG (2016) Changes in free amino acid concentration in rye grain in response to nitrogen and sulfur availability, and expression analysis of genes involved in asparagine metabolism. Front Plant Sci 7:917

    Article  PubMed  PubMed Central  Google Scholar 

  • Poveda J (2020) Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismate mutase. Agronomy 10:118.

    Google Scholar 

  • Purdy SJ, Bussell JD, Nunn CP, Smith SM (2013) Leaves of the arabidopsis maltose exporter1 mutant exhibit a metabolic profile with features of cold acclimation in the warm. PLoS ONE 8:e79412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qados AM (2010) Effect of arginine on growth, nutrient composition, yield and nutritional value of mung bean plants grown under salinity stress. Nature 8:30–42

    Google Scholar 

  • Qi F, Zhang F (2020) Cell cycle regulation in the plant response to stress. Front Plant Sci 10:1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487

    Article  CAS  Google Scholar 

  • Rajaei P, Mohamadi (2013) Effect of beta-aminobutyric acid (BABA) on enzymatic and non-enzymatic antioxidants of Brassica napus L. under drought stress. Int J Biosci 3:41–47

    Article  CAS  Google Scholar 

  • Ramadan AA, Abd Elhamid EM, Sadak MS (2019) Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Nat Res Cent 43:118

    Article  Google Scholar 

  • Rana NK, Mohanpuria P, Yadav SK (2008) Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress. Biol Plant 52:361–364

    Article  CAS  Google Scholar 

  • Ranieri A, Castanga A, Scebba F, Careri M, Zagnoni I, Predieri G et al (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54

    Article  PubMed  CAS  Google Scholar 

  • Rao SR, Qayyum A, Razzaq A, Ahmad M, Mahmood I, Sher A (2012) Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. J Anim Plant Sci 22:768–772

    CAS  Google Scholar 

  • Rekoslavskaya N, Shvetsov SG, Markova T, Gamburg KZ (1992) Induction of N-malonyl-D-tryptophan by drought stress. Is D-tryptophan the only D-amino acid appeared in wilted leaves? Biol Plant 34:297–304

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulphonium compounds in higher plants. Ann Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Ricoult C, Cliquet JB, Limami AM (2005) Stimulation of alanine amino transferase (AlaAT) gene expression and alanine accumulation in embryo axis of the model legume Medicago truncatula contribute to anoxia stress tolerance. Physiol Plant 123:30–39

    Article  CAS  Google Scholar 

  • Ricoult C, Echeverria LO, Cliquet JB, Limami AM (2006) Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. J Exp Bot 57:3079–3089

    Article  PubMed  CAS  Google Scholar 

  • Rishi V, Anjum F, Ahmad F, Pfeil W (1998) Role of non-compatible osmolytes in the stabilization of proteins during heat stress. Biochem J 329:137–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizwan M, Ali S, Akbar MZ, Shakoor MB, Mahmood A, Ishaque W, Hussain A (2017) Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environ Sci Pollut Res 24:21938–21947

    Article  CAS  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues-Corrêa KC, Fett-Neto AG (2019) Abiotic stresses and non-protein amino acids in plants. Criti Rev Plant Sci 38:411–430

    Article  Google Scholar 

  • Rodríguez M, Canales E, Borroto CJ, Carmona E, Lopez J, Pujol M, Borrás-Hidalgo O (2006) Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. J Plant Physiol 163:577–584

    Article  PubMed  CAS  Google Scholar 

  • Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276

    Article  PubMed  CAS  Google Scholar 

  • Romero LC, Domínguez-Solís JR, Gutiérrez-Alcalá G, Gotor C (2001) Salt regulation of O-acetylserine (thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiol Biochem 39:643–647

    Article  CAS  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed 9:73–80

    Article  CAS  Google Scholar 

  • Roy Chowdhury A, Ghosh M, Lal M, Pal A, Hazra KK, Acharya SS et al (2019) Efficacy of calcium chloride and arginine foliar spray in alleviating terminal heat stress in late-sown wheat (Triticum aestivum L.). J Agric Sci:1–13. https://doi.org/10.1017/S002185961900087X

  • Sadak MS, El-Hameid AR, Zaki FS, Dawood MG, El-Awadi ME (2020) Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull Nat Res Cent 44:1–10

    Article  Google Scholar 

  • Sadak SHM, Abdelhamid MT, Schmidhalter U (2015) Effect of foliar application of aminoacids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta Biol Colomb 20:141–152

    Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer UT, Udvardi MK, Kopka J (2011b) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617

    Article  PubMed  CAS  Google Scholar 

  • Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M et al (2011a) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE 6:e17094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjaya HPY, Su RC, Ko SS, Tong CG, Yang RY, Chan MT (2008) Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress. Plant Cell Environ 31:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Santos C, Pereira A, Pereira S, Teixeira J (2004) Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Sci Hortic 103:101–111

    Article  CAS  Google Scholar 

  • Scarpeci TE, Frea VS, Zanor MI, Valle EM (2017) Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. J Exp Bot 68:673–685

    PubMed  CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Serrano N, Ling Y, Bahieldin A, Mahfouz MM (2019) Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Sci Rep 9:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol Concepts 2:407–419

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: Reviews of environmental contamination and toxicology, vol 241. Springer, Cham, pp 73–137

    Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GP, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  PubMed Central  CAS  Google Scholar 

  • Shen L, Foster JG, Orcutt DM (1989) Composition and distribution of free amino-acids in flatpea (Lathyrus sylvestris L.) as influenced by water deficit and plant-age. J Exp Bot 40:71–79

    Article  CAS  Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P et al (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J et al (2011) Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics 11:4122–4138

    Article  PubMed  CAS  Google Scholar 

  • Simon S, Hemaprabha G (2012) Sugarcane specific drought responsive candidate genes identified through differential expression in resistant and susceptible genotypes of sugarcane (Saccharum sp.). Int Sugar J 114:731

    CAS  Google Scholar 

  • Simon-Sarkadi L, Galiba G (1996) Reflection of environmental stresses on the amino acid composition of wheat. Period Polytech Chem Eng 40:79–86

    CAS  Google Scholar 

  • Singh D, Balota M, Collakova E, Isleib TG, Welbaum GE, Tallury SP (2016) Heat stress related physiological and metabolic traits in peanut seedlings. Peanut Sci 43:24–35

    Article  Google Scholar 

  • Sircelj H, Batic F, Stampar F (1999) Effects of drought stress on pigment, ascorbic acid and free amino acids content in leaves of two apple tree cultivars. Phyton-Horn 39:97–100

    CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    Article  PubMed  CAS  Google Scholar 

  • Song JN, Wang YQ, Li S, Li FL, Hu YJ, Yang HB (2019) Effect of exogenous amino acids on yield and quality of tartary buckwheat in non-saline and saline-alkali soil. bioRxiv. https://doi.org/10.1101/2019.12.24.887778.

  • Sós-Hegedüs A, Juhász Z, Poór P, Kondrák M, Antal F, et al. (2014) soil drench treatment with β-aminobutyric acid increases drought tolerance of potato PLoS ONE 9:e114297.

    Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Tanaka H, Murakami N (2017) Molecular characterization of barley methionine γ-lyase and gene expression by abiotic stress and aspartate family amino acids. J Plant Biochem Physiol 5:2

    Article  Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J et al (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78:840–845

    Article  PubMed  CAS  Google Scholar 

  • Ta TC, Joy KW (1986) Metabolism of some amino acids in relation to the photorespiratory nitrogen cycle of pea leaves. Planta 169:117–122

    Article  PubMed  CAS  Google Scholar 

  • Tao Z, Chang X, Wang D, Wang Y, Ma S, Yang Y, Zhao G (2018) Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. Crop J 6:413–425

    Article  Google Scholar 

  • Tavares S, Wirtz M, Beier MP, Bogs J, Hell R, Amâncio S (2015) Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. Front Plant Sci 6:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira J, Pereira S (2007) High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ Exp Bot 60:121–126

    Article  CAS  Google Scholar 

  • Teixeira WF, Fagan EB, Soares LH, Umburanas RC, Reichardt K, Neto DD (2017) Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Front Plant Sci 8:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C et al (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68:1697–1713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tercé-Laforgue T, Clément G, Marchi L, Restivo FM, Lea PJ, Hirel B (2015) Resolving the role of plant NAD-glutamate dehydrogenase: III. Overexpressing individually or simultaneously the two enzyme subunits under salt stress induces changes in the leaf metabolic profile and increases plant biomass production. Plant Cell Physiol 56:1918–1929

    Article  PubMed  CAS  Google Scholar 

  • Thavarajah D, Ball RA (2006) Drought-induced changes in free amino acid and ureide concentrations of nitrogen-fixing chickpea. Can J Plant Sci 86:149–156

    Article  CAS  Google Scholar 

  • Thind SK, Malik CP (1987) Correlated changes of some amino acids and protease in wheat seedlings subjected to water and temperature stresses. Phyton (Austria) 28:261–269

    Google Scholar 

  • Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S et al (2020) Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep 10:1152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N et al (2009) Characterization of the ABA regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S et al (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  CAS  Google Scholar 

  • Venekamp JH, Koot TM (1988) The sources of free proline and asparagine in field bean plants, Vicia faba L., during and after a short period of water withholding. J Plant Physiol 132:102–109

    Article  CAS  Google Scholar 

  • Waditee-Sirisattha R, Kageyama H, Fukaya M, Rai V, Takabe T (2015) Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. FEMS Microbiol Lett 362:fnv198

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Lee PD, Liu LF, Su JC (1999) Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Bot Bull Acad Sinica 40:219–225

    CAS  Google Scholar 

  • Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F (2014) Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS ONE 9:e104657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waqas MA, Kaya C, Riaz A, Li YE (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wargent JJ, Pickup DA, Paul ND, Roberts MR (2013) Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator. BMC Plant Biol 13:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    Article  CAS  Google Scholar 

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL et al (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Singh P, Chen MC, Zimmerli L (2010) L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot 61:995–1002

    Article  PubMed  Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H et al (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen ZL, Qu LJ (2005) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168:297–302

    Article  CAS  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Zhang W, Qu LJ, Chen Z (2003) Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Sci Bull 48:2594–2600

    Article  CAS  Google Scholar 

  • Wycisk K, Kim EJ, Schroeder JI, Kramer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128–134

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chen Z, Wang F, Jia W, Xu Z (2020a) Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci Rep 10:5242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Ma J, Lei P, Wang Q, Feng X, Xu H (2020b) Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Sci Rep 10:252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yagi MI, Abdulkareem SS (2006) Effects of exogenous arginine and uric acid on Eruca sativa Mill grown under saline conditions. J Sci Technol 7:1–11

    Google Scholar 

  • Yang H, Cui P, Li Y, Cui C, Huo Y, Lu G (2020) Proteomic and metabolic profile analysis of low-temperature storage responses in Ipomoea batata Lam. tuberous roots. Preprint, Research Square. https://doi.org/10.21203/rs.2.22545/v2

  • Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J et al (2013) Overexpression of the Arabidopsis photorespiratory pathway gene, serine:glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tissue Organ Cult 113:407–416

    Article  CAS  Google Scholar 

  • Yang Z, Chang Z, Sun L, Yu J, Huang B (2014) Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS ONE 9:e116283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Lu R, Dai Z, Yan A, Tang Q, Cheng C et al (2017) Salt-Stress response mechanisms using de novo transcriptome sequencing of salt-tolerant and sensitive Corchorus spp. genotypes. Genes 8:226

    Article  PubMed Central  CAS  Google Scholar 

  • Yi H, Dey S, Kumaran S, Lee SG, Krishnan HB, Jez JM (2013) Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone. J Biol Chem 288:36463–36472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann Bot 89:825–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You J, Hu H, Xiong L (2012) An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci 197:59–69

    Article  PubMed  CAS  Google Scholar 

  • You J, Zhang Y, Liu A, Li D, Wang X, Dossa K et al (2019) Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol 19:267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine (thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126:1001–1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan L, Tang L, Zhu S, Hou J, Chen G, Liu F et al (2017) Influence of heat stress on leaf morphology and nitrogen-carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc Bot Pol 86:16

    Article  CAS  Google Scholar 

  • Zahir ZA, Yasin HM, Naveed M, Anjum MA, Khalid M (2010) L-tryptophan application enhances the effectiveness of Rhizobium inoculation for improving growth and yield of mungbean (Vigna radiata (L.) Wilczek). Pak J Bot 42:1771–1780

    CAS  Google Scholar 

  • Zeid IM (2009) Effect of arginine and urea on polyamines content and growth of bean under salinity stress. Acta Physiol Plant 31:65

    Article  CAS  Google Scholar 

  • Zemanová V, Pavlík M, Pavlíková D, Tlustoš P (2013) The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant Soil Environ 59:417–422

    Article  Google Scholar 

  • Zhang C, Pang Q, Jiang L, Wang S, Yan X, Chen S, He Y (2015) Dihydroxyacid dehydratase is important for gametophyte development and disruption causes increased susceptibility to salinity stress in Arabidopsis. J Exp Bot 66:879–688

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L et al (2019) Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol 19:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang C, Lin J, Yang Y, Peng Y, Tang D et al (2015) Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice. Planta 241:727–740

    Article  PubMed  CAS  Google Scholar 

  • Zhu YC, Sun DX, Yun DE, An GL, Li WH, Si WJ et al (2020) Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon (Citrullus lanatus). J Integr Agric 19:528–540

    Article  CAS  Google Scholar 

  • Zuther E, Schaarschmidt S, Fischer A, Erban A, Pagter M, Mubeen U et al (2019) Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ 42:854–873

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganie, S.A. (2021). Amino Acids Other Than Proline and Their Participation in Abiotic Stress Tolerance. In: Wani, S.H., Gangola, M.P., Ramadoss, B.R. (eds) Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_3

Download citation

Publish with us

Policies and ethics