Skip to main content
Log in

Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Oryza sativa L. cv IR64 is a widely cultivated, salt-sensitive indica rice, while Pokkali is a well-known, naturally salt-tolerant relative. To understand the molecular basis of differences in their salinity tolerance, three subtractive cDNA libraries were constructed. A total of 1,194 salinity-regulated cDNAs are reported here that may serve as repositories for future individual gene-based functional genomics studies. Gene expression data using macroarrays and Northern blots gives support to our hypothesis that salinity tolerance of Pokkali may be due to constitutive overexpression of many genes that function in salinity tolerance and are stress inducible in IR64. Analysis of genome architecture revealed the presence of these genes on all the chromosomes with several distinct clusters. Notably, a few mapped on one of the major quantitative trait loci – Saltol – on chromosome 1 and were found to be differentially regulated in the two contrasting genotypes. The present study also defines a set of known abiotic stress inducible genes, including CaMBP, GST, LEA, V-ATPase, OSAP1 zinc finger protein, and transcription factor HBP1B, that were expressed at high levels in Pokkali even in the absence of stress. These proposed genes may prove useful as “candidates” in improving salinity tolerance in crop plants using transgenic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Babu RC, Zhang J, Blumc A, Hod TDH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2004) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. J Plant Growth Regul 36:61–70

    Google Scholar 

  • Bates LS, Waldren RP, Teare D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–297

    Article  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unravelling abiotic stress tolerance mechanisms—getting genomic going. Curr Opin Plant Biol 9:180–188

    Article  PubMed  CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp J Agric Sci 85:68–76

    Google Scholar 

  • Chao DY, Lou YH, Shi M, Lou D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Li Q, Sun L, He Z (2006) The rice 14–3–3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13:53–63

    Article  PubMed  CAS  Google Scholar 

  • Chen A-P, Wang G-L, Qu Z-L, Lu C-X, Liu N, Wang F, Xia G-X (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Czernic P, Visser B, Sun W, Savoure A, Deslandes L (1999) Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant J 18:321–327

    Article  PubMed  CAS  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    Article  PubMed  CAS  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  PubMed  CAS  Google Scholar 

  • Du L, Chen Z (2000) Identification of genes encoding receptor-like kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J 24:837–847

    Article  PubMed  CAS  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Khush GS, Virk PS (2005) Selection criteria. In: Hardy B (ed) IR varieties and their impact. vol. 15. International Rice Research Institute, Los Bonas

    Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet J-M, Bouhar, mont J (1995) Changes in plant responses to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49

    Article  PubMed  CAS  Google Scholar 

  • Mahalakshmi S, Christopher GS, Reddy TP, Rao KV, Reddy VD (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359

    Article  PubMed  CAS  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Ohtake Y, Takahashi T, Komeda Y (2000) Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol 41:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pareek A, Singla-Pareek SL, Sopory SK, Grover A (2007) Analysis of salt stress-related transcriptome fingerprints from diverse plant species. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht, pp 267–287

    Chapter  Google Scholar 

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Zollner A, Dieter M, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munssterkotter M et al (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Agarwal M, Reddy M, Sopory S, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theor Appl Genet 106:620–628

    PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, ed 2. Cold Spring Harbour Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shiozaki N, Yamada M, Yoshiba Y (2005) Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theor Appl Genet 110:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:119–130

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Kathiresan A, Bennet J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in functional genomics of abiotic response in crop plants. Plant Biotech J 5:361–380

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Xie JH, Zapata-Arias FJ, Shen M, Afza R (2000) Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica 116:105–110

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for D1-Pyroline-5′-carboxylate synthase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants received from the International Atomic Energy Agency (Vienna), International Foundation for Science (Sweden), Department of Science and Technology, Department of Biotechnology, Government of India, and fellowship (S. K.) from the Council of Scientific and Industrial Research, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sneh L. Singla-Pareek or Ashwani Pareek.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Table S1

Details of the total 1194 unique ESTs from the three subtractive libraries (PDF 288 KB).

Table S2

Details of the ESTs from two subtractive libraries selected for reverse northern analysis (PDF 73.3 KB).

Table S3

Details of set of selected ESTs used for Northern analysis (PDF 28.0 KB).

Supplementary Figure 1

(PDF 126 KB).

Figure S2

Graphical representation (with Laserdensitometry values) generated from northernhybridization of selected genes in early and late phaseof salinity stress in the sensitive cultivar IR64 (in blue color) and the tolerant cultivar Pokkali (in red color). LecRK:Lectinreceptor like kinase protein; STK:Serinethreonine protein kinase receptor precursor; MAPK:Mitogen-activated protein kinase homolog 6; CIPK:CIPK like protein 1; VDAC1:Voltage dependent anion-selective channel ; ATP synthase:VacuolarATP synthase 16 kdaproteolipid subunit; VDAC2 :Voltage dependent anion-selective channel; HBP1B:Transcription factor HBP1B; Zinc finger:Multiplestress responsive zinc finger protein OSAP1; Myb:Myb related protein HV33; NPP:Nicotinate-nucleotide pyrophosphorylase; CaM:SF16 protein with calmodulin binding motif; Clp protease:ATP-dependent Clp protease proteolytic subunit; Ubiquitin:Ubiquitin-like protein 5; cyclophilin:Peptidyl-prolylcis-trans isomeraseprotein; LEA:Lateembryogenesis abundant protein; GSTF2:Glutathione-s-transferaseII; RuBP:Ribulosebisphosphatecarboxylasesmall chain; RHN1:Ras related protein RHN1; His D:Histidinedecarboxylase; DD:Dihydrolipoyldehydrogenase; RP isomerase:Ribose-5-phosphate isomerase; UCE:Ubiquitin-conjugating enzyme family protein; Hypo1:Hypothetical protein 1; Reteroposon protein:Retrotransposonprotein; CBS:CBS domain protein; HCS:Hypotheticalprotein expressed under carbonate stress; SDCP:Swirmdomain containing expressed protein (PDF 190 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, S., Panjabi nee Sabharwal, V., Kushwaha, H.R. et al. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L.. Funct Integr Genomics 9, 109–123 (2009). https://doi.org/10.1007/s10142-008-0088-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0088-5

Keywords

Navigation