Skip to main content

Genomics, Phenomics, and Next Breeding Tools for Genetic Improvement of Safflower (Carthamus tinctorius L.)

  • Chapter
  • First Online:
Oil Crop Genomics

Abstract

Safflower is one of the most important oilseed crops with high-quality seed oil. It can be grown especially in the arid and semiarid regions in the world. The main reason why safflower is not widely cultivated is because of its low yield. Various breeding efforts have made a significant contribution to the improvement of safflower; however, it seems necessary to exploit the potentiality of this underutilized plant. The development of new and improved safflower varieties will improve the sustainability of this crop to different environmental conditions. Classic breeding efforts made great efforts in safflower breeding; however, these techniques have been slow to develop complex traits such as yield, oil yield, some quality traits, and biotic-abiotic stress resistance. Recent advancements in molecular markers and genome sequencing technologies enhanced the breeding activities and aided the scientific community to understand and comprehensively explore the genetic diversity and population structure of safflower. Phenotypic and molecular characterization helped the construction of genetic linkage maps, leading to a better understanding of complex quantitative characters for safflower varieties. The present chapter articulates different aspects of safflower including phenomics, chemical content, origin-diffusion, similarity centers, wild relatives, genetic resources, trades, and comprehensive advancement in safflower breeding in terms of classical breeding, tissue culture, QTL mapping, association mapping, transgenic breeding, genome editing, and speed breeding. This information will lead to more short-term solutions in breeding safflower crop and will provide more practical information for breeders in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel GH, Discroll MF (1976) Sequential traits development and breeding for high yield. Crop Sci 16:213–216

    Article  Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Adalı M, Öztürk Ö (2017) Konya Koşullarında Bazı Aspir Çeşitlerinin Verim ve Verim Unsurlarının Belirlenmesi. Selçuk Tarım Bilimleri Dergisi 3(2):233–237

    Google Scholar 

  • Agyman GA, Loiland L, Karow R et al. (2002) Safflower. Dry land cropping systems [internet]. Oregon State University. Available from: http://www.eesc.oregonstate.edu

  • Ahmad Zadeh AK, Almassi M, Meighani HM et al (2011) Suitability of Carthamus oxyacantha plant as biodiesel feedstock. Aust J Crop Sci 5(12):1639

    Google Scholar 

  • Akbari M, Wenzl P, Caig V et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM et al (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali F, Yılmaz A, Nadeem MA et al (2019) Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers. PLoS ONE 14(2):e0211985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali F, Yilmaz A, Chaudhary HJ et al (2020a) Investigation of Morpho-Agronomic Performance and Selection Indices in the International Safflower Panel for Breeding Perspectives 2. Turk J Agric For:43

    Google Scholar 

  • Ali F, Nadeem MA, Barut M et al (2020b) Genetic diversity, population structure and marker-trait association for 100-seed weight in international safflower panel using SilicoDArT marker information. Plants 9(5):652

    Article  PubMed Central  CAS  Google Scholar 

  • Alvarez I, Tomaro LM, Benavides PM (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tiss Org Cult 74:51–59

    Article  CAS  Google Scholar 

  • Ambreen H, Kumar S, Variath MT et al (2015) Development of genomic microsatellite markers in Carthamus tinctorius L. (Safflower) using next generation sequencing and assessment of their crossspecies transferability and utility for diversity analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0135443

  • Ambreen H, Kumar S, Kumar A et al (2018) Association mapping for important agronomic traits in safflower (Carthamus tinctorius L.) core collection using microsatellite markers. Front Plant Sci 9:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30. https://doi.org/10.1007/s10681-007-9556-6

    Article  CAS  Google Scholar 

  • Anonymous (1985). Safflower improvement. Thirteen research report, Nimbkar Agricultural Research Institute, Phaltan, District Satara, Maharashtra, India.69 p

    Google Scholar 

  • Arslan Y (2018) Agro-morphological characterization of wild safflower (Carthamus L., Asteraceae) species in Turkey. Pak. J Bot 50(2):685–692

    CAS  Google Scholar 

  • Arslan Y, Katar D, Güneylioğlu H et al (2010) Türkiye Florasındaki Yabani Carthamus L. Türleri ve Aspir (C. tinctorius L.) Islahında Değerlendirme Olanakları. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 19(1-2):36–43

    Google Scholar 

  • Arystanbekkyzy M, Nadeem MA, Aktas H et al (2019) Phylogenetic and taxonomic relationship of turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by iPBSretrotransposons markers. Int. J. Agric. Biol, 21, 155–163.

    Google Scholar 

  • Arzani A, Mirodjagh SS (1999) Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell Tiss Org Cult 58:67–72

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Ashrafi E, Razmjoo K (2010) Effect of irrigation regimes on oil content and composition of safflower (Carthamus tinctorius L.) cultivars. J Am Oil Chem Soc 87(5):499–506

    Article  CAS  Google Scholar 

  • Ashri A (1957) Cytogenetics and morphology of Carthamus L. species and hybrids. Ph. D. Thesis Univ. of Calif., Davis

    Google Scholar 

  • Ashri A (1973) Divergence and Evolution in the Safflower Genus, Carthamus, Final Research Report for USDA PL 480 Project No. A-10-CR-18, Hebrew University, Rehovot, Israel

    Google Scholar 

  • Ashri A (1975) Evaluation of the germ plasm collection of safflower, Carthamus tinctorius L. V distribution and regional divergence for morphological characters. Euphytica 24(3):651–659

    Article  Google Scholar 

  • Ashri A, Knowles PF (1960) Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron J 52:11–17

    Article  Google Scholar 

  • Ashri A, Knowles PF (1977) Abst. A. Mtg. Am. Soc. Agron. p. 50

    Google Scholar 

  • Ashri A, Zimmer DE, Urie AL et al (1974) Evaluation of world collection of safflower Carthamus tinctorius L. yield and yield components and their relationships. Crop Sci 14:799–802

    Article  Google Scholar 

  • Ashri A, Knowles PF, Urie AL et al. (1975). Evaluation of the germ plasm collection of safflower, C. tinctorius L. III. Oil content and iodine value and their associations with other characters. Econ Bot

    Google Scholar 

  • Asoro FG, Newell MA, Beavis WD et al (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4(2):132–144

    Article  Google Scholar 

  • Azab A (2018) Total Phenolic Content, Antioxidant Capacity and Antifungal Activity of Extracts of Carthamus tenuis and Cephalaria joppensis. Eur Chem Bull 7(4–6):156–161

    Article  CAS  Google Scholar 

  • Bagawan II, Ravikumar RL (2001) Strong undesirable linkages between seed yield and oil components-a problem in safflower improvement. In: Proceedings of the 5th international Safflower conference, Williston, North Dakota and Sidney, Montana, USA, 23–27 July, 2001. Safflower: a multipurpose species with unexploited potential and world adaptability, pp. 103–107. Department of Plant Pathology, North Dakota State University

    Google Scholar 

  • Bajji M, Lutts S, Kinet JM (2004) Physiological changes after exposure to and recovery from polyethylene glycolinduced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. J Plant Physiol 156:75–83

    Article  Google Scholar 

  • Baloch FS, Alsaleh A, de Miera LES et al (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252

    Article  CAS  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ et al (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PloS one 12(1):e0167821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barakat MN, Abdel-Latif TH (1996) In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91:127–140

    Article  Google Scholar 

  • Barati M, Arzani A (2012) Genetic diversity revealed by EST-SSR markers in cultivated and wild safflower. Biochem Syst Ecol 44:117–123

    Article  CAS  Google Scholar 

  • Barut M, Nadeem MA, Karaköy T, Baloch FS (2020) DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turk J Agric For 44

    Google Scholar 

  • Bassi FM, Sanchez-Garcia M (2017) Adaptation and stability analysis of ICARDA durum wheat elites across 18 countries. Crop Sci 57(5):2419–2430

    Article  Google Scholar 

  • Bassil ES, Kaffka SR (2002) Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. Crop response to salinity. Agric Water Manag 54(1):81–92

    Article  Google Scholar 

  • Basu S, Gangopadhyay G, Mukherjee BB (2002) Salt tolerance in rice in vitro: Implication of accumulation of Na+, K+ and proline. Plant Cell Tiss Org Cult 96:55–64

    Article  Google Scholar 

  • Bayramin S, Kaya MD (2009) Advancement of safflower and rapeseed production of Turkey in recent years. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 18:43–47

    Google Scholar 

  • Beke GJ, Volkmar KM (1995) Mineral composition of flax (Linum usitatissimum L.) and safflower (Carthamus tinctorius L.) on a saline soil high in sulfate salts. Can J Plant Sci 75:399–404

    Article  CAS  Google Scholar 

  • Belaj A, del Carmen Dominguez-García M, Atienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378. https://doi.org/10.1007/s11295-011-0447-6

    Article  Google Scholar 

  • Bergman JW, Flynn CR (2001) High oleic safflower as a diesel fuel extender-a potential new market for Montana safflower. In: Proceedings of the 5th international Safflower conference, Williston, North Dakota and Sidney, Montana, USA, 23–27 July, 2001. Safflower: a multipurpose species with unexploited potential and world adaptability, pp 289–293. Department of Plant Pathology, North Dakota State University.

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bhardwaj SC, Kumar A, Bhargavand GK et al (1990) Assessment of losses caused by insect pests in safflower (Carthamus tinctorius L.) Indian. J Appl Ent 4:61–70

    Google Scholar 

  • Bhattacharjee R, Khairwal IS, Bramel PJ et al (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155:35–45. https://doi.org/10.1007/s10681-006-9298-x

    Article  Google Scholar 

  • Blackshaw RE (1993) Safflower (Carthamus tinctorius) density and row spacing effects on competition with green foxtail (Setaria viridis). Weed Sci. 41:403–408

    Article  Google Scholar 

  • Bocheva A, Mikhova B, Taskova R et al (2003) Antiinflammatory and analgesic effects of Carthamus lanatus aerial parts. Fitoterapia 74(6):559–563

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tiss Org Cult 73:101–115

    Article  CAS  Google Scholar 

  • Bowers JE, Pearl SA, Burke JM (2016) Genetic mapping of millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome resequencing. G3 6(7):2203–2211

    Article  PubMed  PubMed Central  Google Scholar 

  • Bukhsh E, Malik SA, Ahmad SS et al (2014) Hepatoprotective and hepatocurative properties of alcoholic extract of Carthamus oxyacantha seeds. Afr J Plant Sci 8(1):34–41

    Article  Google Scholar 

  • Bülbül AS, Tarıkahya-Hacıoğlu B, Arslan Y et al (2013) Pollen morphology of Carthamus L. species in Anatolian flora. Plant Syst Evol 299(3):683–689

    Article  Google Scholar 

  • Camas N, Esendal E (2006) Estimates of broad-sense heritability for seed yield and yield components of safflower (Carthamus tinctorius L.). Hereditas 143:55–57

    Article  PubMed  Google Scholar 

  • Cantelmo NF, Von Pinho RG, Balestre M (2017) Genome-wide prediction for maize single-cross hybrids using the GBLUP model and validation in different crop seasons. Mol Breed 37(4):51

    Article  CAS  Google Scholar 

  • Cassini H (1819) Dictionnaire de Sciences Naturelles. Paris. Cited by King R, Dawson HW (eds), 1975. Cassini on Compositae. Oriole Editions, New York

    Google Scholar 

  • Cebrailoglu N, Yildiz AB, Akkaya O et al (2019) CRISPR-Cas: Removing Boundaries of the Nature. Eur J Biol 78(2):157–164

    CAS  Google Scholar 

  • Cervantes-Martinez JE (2001) Safflower production and research in Mexico: status and prospects. In Proceedings of the 5th international Safflower conference, Williston, ND, and Sidney, MT, July 23-27, 2001. Bergman, J.W. and H.H. Mundel, Eds., p. 282

    Google Scholar 

  • Chapman MA, Burke JM (2007) DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biology 7(1):60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman MA, Hvala J, Strever J et al (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a Near Eastern origin and five centers of diversity. Am J Bot 97(5):831–840

    Article  PubMed  CAS  Google Scholar 

  • Chavan VM (1961) Niger and Safflower. Indian Central Oilseeds Committee Publication, Hyderabad

    Google Scholar 

  • Chavoushi M, Najafi F, Salimi A et al (2019) Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind Crops Prod 134:168–176

    Article  CAS  Google Scholar 

  • Chawla HS (2000) Introduction to plant biotechnology. Science Publisher, New Hampshire

    Google Scholar 

  • Chowdhury S (1944) An Alternaria disease of safflower. J Indian Bot Sci 23:59–65

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement. The basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Conners IL (1943) The rusts of safflower. Phytopathology 33:789–796

    Google Scholar 

  • Dajue L, Mundel H (1996) Safflower. Carthamus tinctorius L. Promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome, Institute of Plant Genetics and Crop Plant Research, Gatersleben

    Google Scholar 

  • Dajue L, Yunzhou H (1993) The development and exploitation of safflower tea. In; Proceedings of the 3rd international safflower conference, June 14–18, Beijing, China, pp: 837-843

    Google Scholar 

  • Das G, Patra JK, Back KH (2017) Corrigendum: Insight into MAS: a molecular tool for development of stress resistant ad quality of rice trough gene stacking. Front plant Sci 8:1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis PH (1975) Flora of Turkey and The East Aegeans İslands, vol 5. The University Press, Edinburg

    Google Scholar 

  • De Azevedo Peixoto L, Moellers TC, Zhang J et al (2017) Leveraging genomic prediction to scan germplasm collection for crop improvement. PloS one 12(6):e0179191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Candolle AP (1838) Prodromus systematis naturalis regni vegetabilis. Sumptibus Sociorum Treuttel et Würtz, Paris, p 6

    Google Scholar 

  • De Candolle A (1890) Origin of cultivated plants. R.W. Hofner Co, New York. [1890] 1967

    Book  Google Scholar 

  • Derakhshan E, Majidi MM, Sharafi Y et al (2014) Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST-microsatellites markers. Biochemical systematics and ecology 54:130–136

    Article  CAS  Google Scholar 

  • Díez CM, Imperato A, Rallo L (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221. https://doi.org/10.2135/cropsci2011.02.0110

    Article  Google Scholar 

  • Duke JA (1983) Handbook of energy crops

    Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Hegde DM (2005) Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52(7):821–830

    Article  Google Scholar 

  • E Sousa MB, Cuevas J, de Oliveira Couto EG et al (2017) Genomic-enabled prediction in maize using kernel models with genotype× environment interaction. G3 7(6):1995–2014

    Article  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S et al (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291. https://doi.org/10.1270/jsbbs.58.281

    Article  Google Scholar 

  • Ebrahimi F, Majidi MM, Arzani A et al (2017) Association analysis of molecular markers with traits under drought stress in safflower. Crop Pasture Sci 68:167–175. https://doi.org/10.1071/cp16252

    Article  CAS  Google Scholar 

  • Ekincialp A, Erdinc C, Turan S et al (2019) Genetic Characterization of Rheum ribes (Wild Rhubarb) Genotypes in Lake Van Basin of Turkey through ISSR and SSR Markers. Int J Agric Biol 21(4):795–802

    CAS  Google Scholar 

  • Erbaş S, Haydar H (2017) Aspir (Carthamus tinctorius L.)’de yaprak dikenliliği ve çiçek renginin genetiği Anadolu Tarım Bilim. Derg./Anadolu J Agric Sci 32:244–248

    Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaoma M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Esendal E (2001) Global adaptability and future potential of safflower. In: Proceedings of the 5th international Safflower conference, Williston, ND, and Sidney, MT, July 23–27, 2001. Bergman, J.W. and H.H. Mundel, Eds., pp xi–xii.

    Google Scholar 

  • Estilai A (1977) Genus Carthamus as an example of plant evolution. Acta Ecol Iran 2:70–76

    Google Scholar 

  • Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7(8):632

    Article  PubMed  CAS  Google Scholar 

  • Fan D, Liu T, Li C et al (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAO (2003) State of the world’s forests 2003. Rome. ftp.fao.org/docrep/fao/005/y7581e/

  • FAO (2021). FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize [accessed 07 January 21]

  • Fehr WR (1987) Principles of cultivar development. McMillan, New York

    Google Scholar 

  • Fernandez-Martinez JM, Rio M, Haro M (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69:115–122

    Article  CAS  Google Scholar 

  • Frankel O (1984) Genetic perspectives of germplasm conservation. Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge 61(3):161–170

    Google Scholar 

  • Furuya T, Yoshikawa T, Kimura T et al (1987) Production of tocopherols by cell culture of safflower. Phytochemistry 26:2741–2747

    Article  CAS  Google Scholar 

  • Gandonou C, Abrini J, Idaomar M, Skali Senhaji N (2005) Response of sugarcane (Saccharum sp.) varieties to embryogenic callus induction and in vitro salt stress. Afr J Biotechnol 4:350–354

    CAS  Google Scholar 

  • Garcia-Moreno MJ, Velasco L, Perez-Vich B (2010) Transferability of non-genic microsatellite and genebased sunflower markers to safflower. Euphytica 175(2):145–150

    Article  CAS  Google Scholar 

  • Garnatje T, Garcia S, Vilatersana R et al (2006) Genome size variation in the genus Carthamus (Asteraceae, Cardueae): systematic implications and additive changes during allopolyploidization. Ann Bot 97(3):461–467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam S, Bhagyawant SS, Srivastava N (2014) Detailed study on therapeutic properties, uses and pharmacological applications of safflower (Carthamus tinctorius L.). Int J Ayur Pharma Res 2(3):1–12

    Google Scholar 

  • Gawande ND, Mahurkar DG, Rathod TH (2005) In vitro screening of wheat genotypes for drought tolerance. Ann Plant Physiol 19:162–168

    Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944

    Article  PubMed  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  PubMed  CAS  Google Scholar 

  • Golkar P (2014) Breeding improvements in safflower (‘Carthamus tinctorius’ L.): a review. Aust J Crop Sci 8(7):1079

    Google Scholar 

  • Golkar P, Arzani A, Maibodi SAM (2007) Evaluation of bread wheat (Triticum aestivum L.) cultivars for in vitro salt tolerance. Agric Sci Technol J 20:191–200. (In Persian)

    Google Scholar 

  • Golkar P, Arzani A, Rezai AM (2011) Genetic analysis of oil content and fatty acid composition in safflower (Carthamus tinctorius L.). J Am Oil Chem Soc 88:975–982

    Article  CAS  Google Scholar 

  • Guo J, Ling H, Wu Q et al (2014) The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep 4:7042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habyarimana E, Parisi B, Mandolino G (2017) Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breed 136(2):245–252

    Article  CAS  Google Scholar 

  • Hacioglu BT, Yaman H, Arslan Y et al (2013) Investigation of molecular diversity of Asian safflower (Carthamus tinctorius L.) accessions by RAPD markers for using in hybridization programme. Res Crops 14(1):169–174

    Google Scholar 

  • Hamadi BS, Hamrouni I, Marzouk B (2001) Comparison of yield components and oil content of selected Safflower (Carthamus tinctorius L.) accessions in Tunisia. In: International Safflower conference.

    Google Scholar 

  • Hamdan YAS, Perez-Vich B, Fernandez-Martinez JM et al (2008a) Inheritance of veryhigh linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breed 127:507–509

    Article  Google Scholar 

  • Hamdan YAS, Velasco L, Perez-Vich B (2008b) Development of SCAR markers linked to male sterility and very high linoleic acid content in safflower. Mol Breed 22:385–393

    Article  CAS  Google Scholar 

  • Hamdan YAS, Perez-Vich B, Fernandez-Martinez JM et al (2009a) Novel safflower germplasm with increased saturated fatty acid content. Crop Sci 49:127–132

    Article  CAS  Google Scholar 

  • Hamdan YAS, Pérez-Vich B, Velasco L et al (2009b) Inheritance of high oleic acid content in safflower. Euphytica 168(1):61–69

    Article  CAS  Google Scholar 

  • Hamdan YAS, Garcia-Moreno MJ, Redondo-Nevado J (2011) Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.). Plant Breed 130(2):237–241

    Article  CAS  Google Scholar 

  • Hamdan YAS, García-Moreno MJ, Fernández-Martínez JM et al (2012) Mapping of major and modifying genes for high oleic acid content in safflower. Mol Breed 30(3):1279–1293

    Article  CAS  Google Scholar 

  • Hamedi M, Golkar P, Arzani A (2016) In vitro salt tolerance of safflower (Carthamus tinctorius L.) genotypes using different explants. Plant Tiss Cult Biotech 26(2):231–242

    Article  Google Scholar 

  • Hanelt P (1961) Systematic study of the genus Carthamus L. (Compositae) a monographic review, Ph.D. Thesis (in German), Martin-Luther University, Halle-Wittenburg, Germany

    Google Scholar 

  • Hasan M, Sarker RH (2013) In vitro selection for NaCl salt tolerance in aromatic rice (Oryza sativa) genotypes. Indian. J Agric Sci 83:1221–1226

    CAS  Google Scholar 

  • Hassani SMR, Talebi R, Pourdad SS et al (2020) In-depth genome diversity, population structure and linkage disequilibrium analysis of worldwide diverse safflower (Carthamus tinctorius L.) accessions using NGS data generated by DArTseq technology. Mol Biol Rep 47(3):2123–2135

    Article  PubMed  CAS  Google Scholar 

  • Hatipoğlu H, Nacar AS, Saraçoğlu M et al (2017) Safflower studies specially in Șanlıurfa. Selcuk J Agric Food Sci 31(2):44–53

    Google Scholar 

  • Hegde DM, Singh V, Nimbkar N (2002) Safflower. In: Singh CB, Khare D (eds) Genetic improvement of field crops. Scientific Publishers, Jodhpur, pp 199–221

    Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA et al (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):64

    Article  Google Scholar 

  • Huaman Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet 98:840–844. https://doi.org/10.1007/s001220051142

    Article  Google Scholar 

  • Indi DV, Lukade GM, Patil PS (1986) Influence of Alternaria leaf spot (Alternaria carthami Chowdhary) on growth and yield of safflower. Curr Res Rep 2(1):137–139

    Google Scholar 

  • Indi DV, Lukade GM, Patil PS et al (1988) Estimation of yield losses due to Alternaria leaf spot in safflower (c.o. Alternaria carthami Chowdhary) under dryland conditions. Pesticides 22(1):41–43

    Google Scholar 

  • Irving DW, Shannon MC, Breda VA et al (1988) Salinity effects on yield and oil quality of high-linoleate and high-oleate cultivars of safflower. J Agric Food Chem 36(1):37–42

    Article  CAS  Google Scholar 

  • ISAAA’s GM Approval Database (2019) Retrieved 30 December 2019, from http://www.isaaa.org/gmapprovaldatabase/

  • Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29(4):25

    Article  Google Scholar 

  • Jalali A, Salehi F, Bahrani M (2012) Effects of different irrigation intervals and weed control on yield and yield components of safflower (Carthamus tinctorius L.). Arch Agron Soil Sci 58(11):1621–1269

    Article  Google Scholar 

  • James C (2014) Global status of transgenic crops in 2014. ISAAA Briefs No. 49

    Google Scholar 

  • Jan SH, Shinwari ZK, Shah SH et al (2016) In-planta transformation: recent advances. Romanian Biotechnol Lett 21(1):11085–11091

    CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One 9(4):e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG et al (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15(5):648–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin Q, Waters D, Cordeiro GM et al (2003) A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Sci 165(2):359–364

    Article  CAS  Google Scholar 

  • Johnson R, Stout D, Bradley V (1993) The us collection: A rich source of safflower germplasm. In: Proceedings of the third international Safflower conference. China, Beijing, pp 9–13

    Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736. https://doi.org/10.2135/cropsci2006.12.0757

    Article  CAS  Google Scholar 

  • Johnson R, Bradley V, Kisha T (2008) Safflower germplasm. Past, present, and future. In: safflower: unexploited potential and world adaptability. 7th International Safflower Conference, Wagga Wagga, New South Wales, Australia, 3–6 November. Agri-MC Marketing and Communication. pp 1–7.

    Google Scholar 

  • Kammili A (2013) Genetic linkage between male sterility and non-spiny trait in safflower (Carthamus tinctorius L.). Plant Breed 132(2):180–184

    Article  Google Scholar 

  • Kar G, Kumar A, Martha M (2007) Water use efficiency and crop coefficients of dry season oilseed crops. Agric Water Manag 87(1):73–82

    Article  Google Scholar 

  • Karık Ü, Nadeem MA, Habyarimana E et al (2019) Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-Retrotransposon marker system. Agronomy 9(10):647

    Article  CAS  Google Scholar 

  • Kaya MD, Bayramin S, Kayaçetin F et al (2009) Determination of proper gamma radiation (60Co) dose to induce variation in safflower. Ziraat Fakültesi Dergisi-Süleyman Demirel Üniversitesi 4(2):28–33

    Google Scholar 

  • Khadeer MA, Anwar SY (1991) Induced mutations in the improvement of safflower (Carthamus tinctorius L.). In: Plant mutation breeding for crop improvement, vol 1

    Google Scholar 

  • Khan SH (2019) Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther. Nucleic Acids 16:326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MA, von Witzke-Ehbrecht S, Maass BL et al (2009) Relationships among different geographical groups, agromorphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius L.). Genet Resour Crop Evol 56:19–30. https://doi.org/10.1007/s10722-008-9338-6

    Article  CAS  Google Scholar 

  • Khorami R, Safarnejad A (2011) In vitro selection of Foeniculum vulgare for salt tolerance. Not Sci Biol 3:90–97

    Article  CAS  Google Scholar 

  • Klisiewicz JM, Houston BR (1962) Fusarium wilt of safflower. Plant Dis Rep 46(10):748–749

    Google Scholar 

  • Knowles PF (1958) Safflower. Adv Agron 10:289–323

    Article  CAS  Google Scholar 

  • Knowles P (1969) Centers of plant diversity and conservation of crop germplasm: Safflower. Econ Bot 23(4):324–329

    Article  Google Scholar 

  • Knowles PF (1988) Carthamus species relationships. Lecture presented at Beijing botanical garden. Institute of Botany, Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Knowles PF (1989) Importance And Distribution. Oil crops of the world: their breeding and utilization 363

    Google Scholar 

  • Knowles P, Ashri A (1958) Wild safflower in California: Improvement of cultivated safflower through plant-breeding program to obtain desirable characteristics of wild species. Calif Agric 12(4):4–5

    Google Scholar 

  • Köse A (2016) A research on determining of seed setting rate in safflower (Carthamus tinctorius L.). Türkiye Tarımsal Araștırmalar Dergisi 3(2):152–158

    Google Scholar 

  • Kuete V, Wiench B, Hegazy MEF et al (2012) Antibacterial activity and cytotoxicity of selected Egyptian medicinal plants. Planta Medica 78(02):193–199

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Ambreen H, Murali TV et al (2015) Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of Carthamus tinctorius L. (Safflower) using AFLP markers. Plant Mol Biol Rep 33:1299–1313. https://doi.org/10.1007/s11105-014-0828-8

    Article  Google Scholar 

  • Kumar S, Ambreen H, Variath MT et al (2016) Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the oilseed crop, safflower (Carthamus tinctorius L.) through maximization strategy. Front Plant Sci 7:1554

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Choudhary RC, Kumara Swamy RV et al (2017) Assessment of genetic diversity in safflower (Carthamus tinctorius L.) genotypes through morphological and SSR marker. J Pharmacogn Phytochem 6(5):2723–2731

    CAS  Google Scholar 

  • Kupsow AI (1932) Bull. Appt. Bot. Genet. Pl. Breed. Ser. 9: 99

    Google Scholar 

  • Ladd SL, Knowles PF (1971) Interactions of alleles at two loci regulating fatty acid composition of the seed oil of safflower (Carthamus tinctorius L.). Crop Sci 11:681–684. https://doi.org/10.2135/cropsci1971.0011183X001100050024x

    Article  CAS  Google Scholar 

  • Lee GA, Sung JS, Lee SY et al (2014) Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour 14:69–78. https://doi.org/10.1111/1755-0998.12146

    Article  PubMed  CAS  Google Scholar 

  • Lezar S, Myburg AA, Berger DK (2004) Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109(7):1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Li D, Mündel HH (1996) Safflower: Carthamus tinctorius L. International Plant Genetic Resources Institute (IPGRI).

    Google Scholar 

  • Li D, Zhou M, Ramanatha Rao V (1993) Characterization and evaluation of Safflower Germplasm. Geological Pub. House, Beijing, China. 260 text and 16 colour p. [Outline of origin, distribution, biology of safflower, collecting and conservation strategy, characterization resulting from evaluations of germplasm of safflower, including world collection grown in China; copies may be purchased by sending a certified cheque or money order for US$45, payable to the academy, to Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 1000093, China]

    Google Scholar 

  • Li Y, Shi Y, Cao Y et al (2005) Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol 51:845–852. https://doi.org/10.1007/s10722-005-8313-8

    Article  Google Scholar 

  • Li ZM, Ding JQ, Wang RX et al (2011) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52:403–406. https://doi.org/10.1007/s13353-011-0054-0

    Article  PubMed  Google Scholar 

  • Lijiao FAN, Meili GUO (2013) Progress of safflower (Carthamus tinctorius L.) regeneration through tissue culture. J Med Coll PLA 28(5):289–301

    Article  Google Scholar 

  • Liu W, Shahid MQ, Bai L et al (2015) Evaluation of genetic diversity and development of a core collection of wild rice (Oryza rufipogon Griff.) populations in China. PLoS ONE 10:e0145990. https://doi.org/10.1371/journal.pone.0145990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Gonzalez G (1989) Anales del Jardin Botánico de Madrid 47:11–34

    Google Scholar 

  • Lopez-Gonzalez G (1990) Acerca de la clasificacion natural del genero Carthamus L., s.1. Anales Jardin Bot Madrid 47:11–34

    Google Scholar 

  • Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52(4):1609–1621

    Article  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1999) Improvement of rice callus regeneration in the presence of NaCl. Plant Cell Tiss Org Cult 57:3–11

    Article  CAS  Google Scholar 

  • Lutts S, Almansouri M, Kinet JM (2004) Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. Plant Sci 167:9–18

    Article  CAS  Google Scholar 

  • Lyra DH, de Freitas Mendonça L, Galli G et al (2017) Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Mol Breed 37(6):80

    Article  CAS  Google Scholar 

  • Mahalakshmi V, Ng Q, Lawson M (2007) Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Resour 5:113–119. https://doi.org/10.1017/S1479262107837166

    Article  Google Scholar 

  • Mahasi MJ, Pathak RS, Wachira FN et al (2006) Correlations and path coefficient analysis in exotic safflower (Carthamus tinctorious L.) genotypes tested in the arid and semi arid lands (Asals) of Kenya. Asian J Plant Sci 5(6):1035–1038

    Article  Google Scholar 

  • Malnoy M, Viola R, Jung MH et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Maluszynski M, Kasha KJ (2002) Mutations. Vitro and molecular techniques for environmentally sustainable crop improvement. Kluwer Academic Publishers, Dordrecht. 246p

    Book  Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66

    Article  CAS  Google Scholar 

  • Mayerhofer R, Archibald C, Bowles V et al (2010) Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 53(4):266–276

    Article  PubMed  CAS  Google Scholar 

  • Merrill SD, Tanaka DL, Hanson JD (2002) Root length growth of eight crop species in Haplustoll soils. Soil Sci Soc Am J 66(3):913–923

    Article  CAS  Google Scholar 

  • Mirzahashemi M, Mohammadi-Nejad G, Golkar P (2015) A QTL linkage map of safflower for yield under drought stress at reproductive stage. Iran J Genet Plant Breed 4(2):20–27

    Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cell Dev Biol Plant 52(5):530–536

    Article  CAS  Google Scholar 

  • Morin L, Sheppard AW (2012) Carthamus lanatus L.-saffron thistle. Biological control of weeds in Australia. CSIRO Publishing, Collingwood, pp 139–145

    Google Scholar 

  • Morton NE (2006) Linkage disequilibrium maps and association mapping. J Clin Investig 115(6):1425–1430. https://doi.org/10.1172/JCI25032

    Article  CAS  Google Scholar 

  • Mozaffari K, Asadi AA (2006) Relationships among traits using correlation, principal components and path analysis in safflower mutants sown in irrigated and drought stress condition. Asian J Plant Sci 5(6):977–983

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nadeem MA, Habyarimana E, Ciftci V et al (2018a) Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PlosONE. https://doi.org/10.1371/journal.pone

  • Nadeem MA, Aasim M, Kırıcı S (2018b) Laurel (Laurus nobilis L.): a less-known medicinal plant to the world with diffusion, genomics, phenomics, and metabolomics for genetic improvement. In: Biotechnological approaches for medicinal and aromatic plants. Springer, Singapore, pp 631–653

    Chapter  Google Scholar 

  • Nagaraj G (1993) June. Safflower seed composition and oil quality-a review. In: 3rd International Safflower conference, Beijing, pp 58–71.

    Google Scholar 

  • Newell MA, Jannink JL (2014) Genomic selection in plant breeding. In: Crop breeding. Humana Press, New York, pp 117–130

    Chapter  Google Scholar 

  • Nimbkar N (2002) Safflower rediscovered. Times Agric J 2(1):32–36

    Google Scholar 

  • Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noirot M, Hamon S, Anthony F (1996) The principal component scoring: a new method of constituting a core collection using quantitative data. Genet Resour Crop Evol 43(1):1–6

    Article  Google Scholar 

  • O’Connor DJ, Wright GC, Dieters MJ et al (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40(2):107–114

    Article  Google Scholar 

  • OGTR 2018. http://www.ogtr.gov.au/

  • Okuzaki A, Ogawa T, Koizuka C et al (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  PubMed  CAS  Google Scholar 

  • Orlikowska TK, Cranston HJ, Dyer WE (1995) Factors influencing Agrobacterium tumefaciens mediated transformation and regeneration of the safflower cultivar centennial. Plant Cell Tiss Org Cult 40:85–91

    Article  CAS  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS et al (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osakabe Y, Liang Z, Ren C et al (2018) CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13(12):2844

    Article  PubMed  CAS  Google Scholar 

  • Pahlavani M, Mirlohi A, Saeidi G (2004) Inheritance of flower color and spininess in safflower (Carthamus tinctorius L.). J Hered 95(3):265–267

    Article  PubMed  CAS  Google Scholar 

  • Patil MB, Shinde YM, Attarde KA (1993) Evaluation of safflower cultures for resistance to alternaria leaf spot (Alternariacarthami) and management strategies. In: Proceeding of the third international Safflower conference, June 14–18, Beijing, China. pp 269–278

    Google Scholar 

  • Pearl SA, Burke JM (2014) Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop. Am J Bot 101(10):1640–1650

    Article  PubMed  Google Scholar 

  • Pearl SA, Bowers JE, Chin-Wo SR et al (2014) Genetic analysis of safflower domestication. BMC Plant Biol 14(43)

    Google Scholar 

  • Poehlman JM, Sleper DA (1995) Breeding field crops, 5th edn. Iowa State University, Ames

    Google Scholar 

  • Popov AM, Kang D (2011) Analgesic and other medicinal properties of Safflower (Carthamus tinctorius L.) seeds. In: Nuts and seeds in health and disease prevention, pp 995–1002. Academic Press

    Google Scholar 

  • Quiroga AR, Díaz-Zorita M, Buschiazzo DE (2001) Safflower productivity as related to soil water storage and management practices in semiarid regions. Commun Soil Sci Plant Anal 32(17–18):2851–2862

    Article  CAS  Google Scholar 

  • Rahamatalla AB, Babiker EE, Krishna AG et al (2001) Changes in fatty acids composition during seed growth and physicochemical characteristics of oil extracted from four safflower cultivars. Plant Foods Human Nutr 56(4):385–395

    Article  CAS  Google Scholar 

  • Rahmani F, Sayfzadeh S, Jabbari H et al (2019) Alleviation of drought stress effects on Safflower yield by foliar application of zinc. Int J Plant Prod:1–12

    Google Scholar 

  • Rao SK, Rohini VK (1999) Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol 16:201–206

    Article  CAS  Google Scholar 

  • Ren C, Liu X, Zhang Z et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohini VK, Rao KS (2000) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049

    Article  CAS  Google Scholar 

  • Rudra Naik V, Gulganji GG, Mallapur CP et al. (2001) Association analysis in safflower under rainfed conditions. In: 5th international safflower conference, Montana, July, pp 23–27

    Google Scholar 

  • Sabzalian MR, Mirlohi A, Saeidi G et al (2009) Genetic variation among populations of wild safflower, Carthamus oxyacanthus analyzed by agro-morphological traits and ISSR markers. Genet Resour Crop Evol 56(8):1057–1064

    Article  Google Scholar 

  • Salunkhe DK, Charan JK, Adjule RN et al (1992) World oilseeds, Van Nostrand. Reinhold, New York, p 326

    Google Scholar 

  • Sasanuma T, Sehgal D, Sasakuma T et al (2008) Phylogenetic analysis of Carthamus species based on the nucleotide sequence of the nuclear SACPD gene and chloroplast trn L-trn F IGS region. Genome 51(9):721–727

    Article  PubMed  CAS  Google Scholar 

  • Saxena M, Singh J, Deshpande S (2008) Two decades of safflower in madhya pradesh from 1984-2004. In: Safflower: unexplored potential and world adaptability. Proceedings of the 7th International Safflower Conference, New South Wales, Australia, Wagga Wagga.

    Google Scholar 

  • Schank SC, Knowles PF (1964) Cytogenetics of hybrids of Carthamus species (Compositae) with ten pairs of chromosomes. Am J Bot 51(10):1093-1102

    Google Scholar 

  • Seeta P, Talat K, Anwar S (2000) Somaclonal variation – an alternative source of genetic variability in safflower. J Cytol Genet 1:127–135

    Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146(1-2):67–76

    Article  CAS  Google Scholar 

  • Sehgal D, Raina SN (2011) Carthamus. In: Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg, pp 63–95

    Chapter  Google Scholar 

  • Sehgal D, Rajpal VR, Raina SN et al (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470. https://doi.org/10.1007/s10709-008-9292-4

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H et al (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Şenel AA (2019) Dünya Aspir Gen Koleksiyonunda Yer Alan Bazi Aspir Hatlarinin Samsun Ekolojik Koşullarinda Verim ve Verim Unsurlari İle Bazi Teknolojik Özelliklerinin Belirlenmesi Üzerine Bir Araştirma. Ondokuz Mayis Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Samsun

    Google Scholar 

  • Shaki F, Ebrahimzadeh Maboud H, Niknam V (2018) Penconazole alleviates salt-induced damage in safflower (Carthamus tinctorius L.) plants. J Plant Interact 13(1):420–427

    Article  CAS  Google Scholar 

  • Shehzad T, Okuizumi H, Kawase M et al (2009) Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56:809–827. https://doi.org/10.1007/s10722-008-9403-1

    Article  CAS  Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell Tiss Organ Cult 103(3):387–401

    Article  CAS  Google Scholar 

  • Singh F, Diwakar B (1995) Chickpea botany and production practices.

    Google Scholar 

  • Singh V, Nimbkar N (1993) Genetics of aphid resistance in safflower (Carthamus tinctorius L.). Sesame Safflower. Newsletter 8:101–106

    Google Scholar 

  • Singh RJ, Nimbkar N (2006) Chapter 6: Safflower (Carthamus tinctorius L.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, New York, pp 167–194

    Google Scholar 

  • Singh V, Nimbkar N (2007) Safflower (Carthamus tinctorius L.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, Boca Raton, pp 167–194

    Google Scholar 

  • Singh V, Nimbkar N (2016) Safflower. In: Breeding oilseed crops for sustainable production, pp 149–167. Academic Press

    Google Scholar 

  • Singh V, Prasad RR (2005) Integrated management of pests and diseases in safflower. Directorate of Oilseeds Research, Hyderabad, India, p 49

    Google Scholar 

  • Smith JR (1996) Safflower. American Oil Chemists’ Society Press, Champaign. 606 p

    Book  Google Scholar 

  • Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4(2):75–82

    Article  Google Scholar 

  • Souza TL, de Barros EG, Bellato CM (2012) Single nucleotide polymorphism discovery in common bean. Mol Breed 30(1):419–428

    Article  CAS  Google Scholar 

  • Srinivas B, Luch H, Green AG et al (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12. https://doi.org/10.1186/1746-4811-7-12

    Article  CAS  Google Scholar 

  • Stetter MG, Zeitler L, Steinhaus A et al (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci 7:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Sujatha M, Gupta SD (2013) Tissue culture and genetic transformation of safflower (Carthamus tinctorius L.). In: Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 297–318

    Chapter  Google Scholar 

  • Tarıkahya Hacıoğlu B, Karacaoğlu Ç, Özüdoğru B (2014) The speciation history and systematics of Carthamus (Asteraceae) with special emphasis on Turkish species by integrating phylogenetic and ecological Niche modelling data. Plant Syst Evol 300(6):1349–1359

    Article  Google Scholar 

  • Thippeswamy M, Sivakumar M, Sudhakarbabu O et al (2013) Generation and analysis of drought stressed subtracted expressed sequence tags from safflower (Carthamus tinctorius L.). Plant Growth Regul 69(1):29–41

    Article  CAS  Google Scholar 

  • Thomas CA (1964) Registration of US 10 Saflower1 (Reg. No. 2). Crop Sci 4(4):446–447

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298. https://doi.org/10.1007/s00122-001-0556-y

    Article  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780. https://doi.org/10.2135/cropsci2009.01.0014

    Article  Google Scholar 

  • Upadhyaya HD, Wang YH, Gowda CLL et al (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126.:2003-2015. https://doi.org/10.1007/s00122-013-2113-x

  • Van Hintum TJ, Brown AHD, Spillane C (2000) Core collections of plant genetic resources. Biovers Int

    Google Scholar 

  • Varshney RK, Tuberosa R (2013) Translational genomics in crop breeding for biotic stress resistance: an introduction. Transl Genom Crop Breed Biotic Stress 1:1–9

    CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity, and breeding of cultural plants. Ronald Press Company, New York

    Google Scholar 

  • Velasco L, Fernandez-Martinez J (2001) Breeding for oil quality in safflower. In: Proceeding 5th international safflower conference. Montana, USA 23–27 July. pp 133–137

    Google Scholar 

  • Verma RC, Shrivastava P (2014) Radiation-induced reciprocal translocations in safflower (Carthamus tinctorius L.). Cytologia 79(4):541–545

    Article  Google Scholar 

  • Vijayakumar J, Ponmanickam P, Samuel P (2017) Influence of Meta-Topolin on Efficient Plant Regeneration via Micropropagation and Organogenesis of Safflower (Carthamus tinctorius L.) cv. NARI-H-15. Am J Plant Sci 8(04):688

    Article  CAS  Google Scholar 

  • Vilatersana R, Garnatje T, Susanna A et al (2005) Bot J Linn Soc 147:375–383

    Article  Google Scholar 

  • Visarada KBRS, Meena K, Aruna C et al (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49(5):1555–1563

    Article  CAS  Google Scholar 

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132(3):669–686

    Article  PubMed  Google Scholar 

  • Wang L, Guan Y, Guan R et al (2006) Establishment of Chinese soybean Glycine max core collections with agronomic traits and SSR markers. Euphytica 151:215–223. https://doi.org/10.1007/s10681-006-9142-3

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S, Williams MJ (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23

    Article  PubMed  Google Scholar 

  • Weiss EA (1971) Castor, sesame, and Safflower. Barnes and Noble, Inc., New York, pp 529–554

    Google Scholar 

  • Weiss EA, (2000) Safflower. In: Oilseed crops. pp 93–129. BlackwellScience Ltd., Victoria, Australia.

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D et al (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci U S A 101:9915–9920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiesner JV (1927) The raw materials of the plant kingdom [In German]. Vol. 1, 4th ed

    Google Scholar 

  • Woo JW, Kim J, Kwon SI (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Reif JC, Kraft T (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ranc N, Muños S et al (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581. https://doi.org/10.1007/s00122-012-2002-8

    Article  PubMed  Google Scholar 

  • Yaman H, (2014) The effects of different gamma radiation doses on the agricultural characters of m1 and m2 plants of safflower (Carthamus tinctorius L.) cultivars and on in vitro adventitious shoot regeneration. Phd thesis. Available from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp

  • Yaman H, Tarıkahya-Hacıoğlu B, Arslan Y et al (2014) Molecular characterization of the wild relatives of safflower (Carthamus tinctorius L.) in Turkey as revealed by ISSRs. Genetic Resour Crop Evol 61(3):595–602

    Article  Google Scholar 

  • Yang S, Pang W, Ash G (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Wu W, Zheng YL (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54:1043. https://doi.org/10.1007/s10722-006-9192-3

    Article  CAS  Google Scholar 

  • Yang X, Yan J, Shah T et al (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431. https://doi.org/10.1007/s00122-010-1320-y

    Article  PubMed  Google Scholar 

  • Yatou O (1985) Radiosensitivity of callus of safflower, Carthamus tinctorius L. IRB Technical News 27:1–2

    Google Scholar 

  • Yau S (2004) Yield, agronomic performance, and economics of safflower in comparison with other rainfed crops in a semi-arid, high-elevation Mediterranean environment. Exp Agric 40:453–462

    Article  Google Scholar 

  • Yeilaghi H, Arzani A, Ghaderian M et al (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130(3):618–625

    Article  CAS  Google Scholar 

  • Yeken MZ, Kantar F, Çancı H et al (2018) Breeding of dry bean cultivars using Phaseolus vulgaris landraces in Turkey. International Journal of Agricultural and Wildlife. Sciences 4:45–54

    Google Scholar 

  • Yeken MZ, Nadeem MA, Karaköy T et al (2019) Determination of Turkish common bean germplasm for morpho-agronomic and mineral variations for breeding perspectives in Turkey. KSU. J Agric Nat 22(Suppl:1):38–50

    Google Scholar 

  • Yermanos S, Hemstreet S, Garber MJ (1967) Inheritance of quality and quantity of seed-oil in safflower (Carthamus tinctorius L.). Crop Sci 7:417–422

    Article  Google Scholar 

  • Yildiz M, Koçak M, Nadeem MA et al (2019) Genetic diversity analysis in the Turkish pepper germplasm using iPBS retrotransposon-based markers. Turk J Agric For 43

    Google Scholar 

  • Ying MC, Dyer WE, Bergman JW (1992) Agrobacterium tumefaciens mediated transformation of safflower (Carthamus tinctorius L.) cv centennial. Plant Cell Rep 11:581–585

    Article  PubMed  CAS  Google Scholar 

  • Zair A, Chlyah A, Sabounji K (2003) Salt tolerance in some wheat cultivars after application of in vitro pressure. Plant Cell Tiss Org Cult 73:237–244

    Article  CAS  Google Scholar 

  • Zargar SM, Gupta N, Nazir M et al. (2016) Omics-A New Approach to Sustainable Production. In: Breeding oilseed crops for sustainable production, pp 317–344). Academic Press

    Google Scholar 

  • Zhang C, Chen X, Zhang Y (2009) A method for constructing core collection of Malus sieversii using molecular markers. Sci Agric Sin 42(2):597–604

    CAS  Google Scholar 

  • Zhang P, Liu X, Tong H et al (2014) Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLoS ONE 9:e111508. https://doi.org/10.1371/journal.pone.0111508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Liang Z, Zong Y (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Commun 7:12617

    Article  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL et al (2003) Single-nucleotide polymorphisms in soybean. Genetics 163(3):1123–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziarati P, Asgarpanah J, Kianifard M (2012) The essential oil composition of Carthamus tinctorius L. flowers growing in Iran. Afr J Biotechnol 11(65):12921–12924

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yılmaz, A. et al. (2021). Genomics, Phenomics, and Next Breeding Tools for Genetic Improvement of Safflower (Carthamus tinctorius L.). In: Tombuloglu, H., Unver, T., Tombuloglu, G., Hakeem, K.R. (eds) Oil Crop Genomics. Springer, Cham. https://doi.org/10.1007/978-3-030-70420-9_11

Download citation

Publish with us

Policies and ethics