Skip to main content
Log in

Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Carthamus tinctorius (2n = 2x = 24), commonly known as safflower, is widely cultivated in agricultural production systems of Asia, Europe, Australia, and the Americas as a source of high quality vegetable and industrial oil. Twenty-two RAPD primers, 18 SSR primers, and 10 AFLP primer combinations were used to assess: (1) the genetic diversity of 85 accessions (originating from 24 countries) representing global germplasm variability of safflower and (2) the interrelationships among safflower ‘centers of similarity’ or ‘regional gene pools’ proposed earlier. The RAPD and SSR primers and AFLP primer combinations revealed 57.6, 68.0, and 71.2% polymorphism, respectively, among 111, 72, and 330 genetic loci amplified from the accessions. The sum of effective number of alleles (66.44), resolving power (59.16), and marker index (51.3) explicitly revealed the relative superiority of AFLP as a marker system in uncovering variation in safflower. Overall, AFLP markers could recognize ‘centers of similarity’ or ‘regional gene pools’. Analysis of molecular variance and Shannon’s information index provided corroborating evidences for the present and previous studies that concluded fragmentation of safflower gene pool into many gene pools. Divergent directional selection is likely to have played an important role in shaping the diversity. From the practical applications standpoint, the diversity of Iran–Afghanistan gene pool is very high, equivalent to the total diversity of the species. The Far East gene pool is the least diverse. The present comprehensive input, first of its own kind in safflower, will assist marker based improvement programmes in the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amel SH, Khaled C, Messaoud M, Mohamed M, Mokhtar T (2005) Comparative analysis of genetic diversity in two Tunisian collections of fig cultivars based on random amplified polymorphic DNA and inter simple sequence repeats fingerprints. Genet Resour Crop Evol 52:563–573. doi:10.1007/s10722-003-6096-3

    Article  CAS  Google Scholar 

  • Ashri A (1971a) Evaluation of world collection of safflower C. tinctorius L. I. Reaction to several diseases and association with morphological characters in Israel. Crop Sci 11:253–257

    Google Scholar 

  • Ashri A (1971b) Evaluation of world collection of C. tinctorius L. II. Resistance to safflower fly A. helianthi R. Euphytica 20:410–415. doi:10.1007/BF00035666

    Article  Google Scholar 

  • Ashri A (1973) Divergence and evolution in the safflower genus Carthamus L. Final research report, PL 480, USDA, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel

  • Ashri A (1975) Evaluation of the germplasm collection of safflower Carthamus tinctorius L. V. Distribution and regional divergence for morphological characters. Euphytica 24:651–659. doi:10.1007/BF00132903

    Article  Google Scholar 

  • Ashri A, Knowles PF, Urie AL, Zimmer DE, Cahaner A, Marani A (1975) Evaluation of the germplasm collection of safflower Carthamus tinctorius III Oil content and iodine value and their associations with other characters. Econ Bot 31:38–46

    Google Scholar 

  • Ashri A, Zimmer DE, Urie AL, Cahaner A, Marani A (1974) Evaluation of world collection of safflower Carthamus tinctorius L. IV Yield and yield components and their relationships. Crop Sci 14:799–802

    Google Scholar 

  • Aslam M, Hazara GR (1993) Evaluation of world collection of safflower (Carthamus tinctorius L.) for yield and other agronomic characters In: Dajue L, Yuanzhou H (eds) Third international safflower conference, Beijing, China, 9–13 June 1993, p 238

  • Bornet B, Goraguer F, Joly G, Branchard M (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45:481–484. doi:10.1139/g02-002

    Article  PubMed  CAS  Google Scholar 

  • Bussel JD (1999) The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol Ecol 8:775–789. doi:10.1046/j.1365-294X.1999.00627.x

    Article  Google Scholar 

  • Carapetian J, Estilai A (1997) Genetics of isozyme coding genes in safflower. In: Corleto A, Mundel HH (eds) Proceedings of the 4th International safflower conference: Safflower: a multipurpose species with unexploited potential and world adaptability, Adriatica, Editrice, Bari, Italy, 2–7 June 1997, pp 235-237

  • Charlesworth B, Nordborg M, Charlesworth D (1997) The effects of local selection, balanced polymorphism, and background selection on equilibrium patterns of genetic diversity in sub-divided populations. Genet Res 70:155–174. doi:10.1017/S0016672397002954

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL (1994) Plant DNA miniprep and microprep: versions 2.1–2.3. In: Freeling M, Walbolt V (eds) The maize handbook. Springer New York Inc., New York, pp 522–525

    Google Scholar 

  • Efron Y, Peleg M, Ashri A (1973) Alcohol dehydrogenase allozymes in the safflower genus Carthamus L. Biochem Genet 9:299–308. doi:10.1007/BF00485742

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fernandez-Martinez J, Rio M, Haro A (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69:115–122

    Article  CAS  Google Scholar 

  • Fischer M, Husi R, Prati D, Peintinger M, van Kleunen M, Schmid B (2000) RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Am J Bot 87:1128–1137. doi:10.2307/2656649

    Article  PubMed  Google Scholar 

  • Futehally S (1982) Inheritance of very high levels of linoleic acid in the seed oil of safflower (Carthamus tinctorius L.). MS thesis, University of California, Davis

  • Genet T, Viljoen CD, Labuschagne MT (2005) Genetic analysis of Ethiopian mustard genotypes using amplified fragment length polymorphism (AFLP) markers. Afr J Biotechnol 4:891–897

    CAS  Google Scholar 

  • Ghebru B, Schmidt RJ, Bennetzen JL (2002) Genetic diversity of Eriterian sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236. doi:10.1007/s00122-002-0929-x

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Li D (1992) Evaluation of safflower (Carthamus tinctorius L.) germplasm–analysis in fatty acid composition of seeds of domestic and exotic safflower varieties. Bot Res 6:28–35

    Google Scholar 

  • Hanelt P (1961) Zur Kenntnis von Carthamus tinctorius L. Kulturpflanze 9:114–145. doi:10.1007/BF02095747 (in German)

    Article  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanuts (Arachis hypogaea L.). Euphytica 97:143–149. doi:10.1023/A:1002949813052

    Article  CAS  Google Scholar 

  • Hongtrakul V, Huestis GM, Knapp SJ (1997) Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germplasm: genetic diversity among oilseed inbred lines. Theor Appl Genet 95:400–407. doi:10.1007/s001220050576

    Article  CAS  Google Scholar 

  • Howard A, Howard GL, Khan AR (1910) The economic significance of natural cross-fertilization in India. Mem Dept Agric India. Bot Ser 3:281–330

    Google Scholar 

  • Kadam BS, Patrankar VK (1942) Natural cross-pollination in safflower. Indian J Genet Plant Breed 2:69–70

    Google Scholar 

  • Keim P, Beavis W, Schupp J, Freestone R (1992) Evaluation of soybean RFLP marker diversity in adapted germplasm. Theor Appl Genet 85:205–212. doi:10.1007/BF00222861

    Article  Google Scholar 

  • Keim P, Maschinski J, Travis SE (1996) An analysis of genetic variation in Astragalus cremnophylax var cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745. doi:10.1111/j.1365-294X.1996.tb00370.x

    Article  PubMed  Google Scholar 

  • Knowles PF (1958) Safflower. Adv Agron 10:289–323. doi:10.1016/S0065-2113(08)60068-1

    Article  CAS  Google Scholar 

  • Knowles PF (1968) Associations of high levels of oleic acid in the seed oil of safflower (Carthamus tinctorius) with other plant and seed characteristics. Econ Bot 22:195–200

    CAS  Google Scholar 

  • Knowles PF (1969a) Modification of quantity and quality of safflower oil through plat breeding. J Am Oil Chem Soc 46:130–132. doi:10.1007/BF02635715

    Article  Google Scholar 

  • Knowles PF (1969b) Centers of plant diversity and conservation of crop germplasm: safflower. Econ Bot 23:324–329

    Google Scholar 

  • Knowles PF (1972) The plant geneticist’s contribution toward changing lipid and amino acid composition of safflower. J Am Oil Chem Soc 49:27–29. doi:10.1007/BF02545133

    Article  CAS  Google Scholar 

  • Ladd SL, Knowles PF (1970) Inheritance of stearic acid in the seed oil of safflower (Carthamus tinctorius L.). Crop Sci 10:525–527

    Google Scholar 

  • Le Clerc V, Briard M, Revollon P (2002) Influence of number and map distribution of AFLP markers on similarity estimates in carrot. Theor Appl Genet 106:157–162

    PubMed  CAS  Google Scholar 

  • Lima MLA, Garcia AAF, Oliviera KM, Matsuoko S, Arizono H, de Sonza CL Jr et al (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugarcane (Saccharum spp). Theor Appl Genet 104:30–38. doi:10.1007/s001220200003

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Melchinger AE, Dussle C, Vuylsteke M, Kuiper M (2000) Relationships among early European maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD and pedigree data. Crop Sci 40:783–791

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marsan PA, Castiglioni P, Fusari K, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227. doi:10.1007/s001220050730

    Article  CAS  Google Scholar 

  • Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J et al (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136. doi:10.1023/A:1009633005390

    Article  CAS  Google Scholar 

  • Negi MS, Sabharwal V, Bhat SR, Lakshmikumaran M (2004) Utility of AFLP markers for the assessment of genetic diversity within Brassica nigra germplasm. Plant Breed 123:13–16. doi:10.1046/j.0179-9541.2003.00926.x

    Article  CAS  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G et al (1998) Comparative analysis of genetic among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255. doi:10.1007/s001220051017

    Article  CAS  Google Scholar 

  • Perera L, Rusell JR, Provan J, McNicol JW, Powell W (1998) Evaluating genetic relationships between indigenous coconut (Cococ nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550. doi:10.1007/s001220050772

    Article  CAS  Google Scholar 

  • Portis E, Barchi L, Acquadro A, Macua JI, Lanteri S (2005) Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed 124:299–304. doi:10.1111/j.1439-0523.2005.01098.x

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238. doi:10.1007/BF00564200

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112. doi:10.1007/s001220051046

    Article  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system version 2.02K Applied Biostatistics, New York

  • Schut JW, Qi X, Stam P (1997) Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor Appl Genet 95:161–1168. doi:10.1007/s001220050677

    Article  Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008a) Advent of DNA markers to decipher genome sequence polymorphism. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes, CRC Press, New York, pp 477–495

    Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008b) Applicability of DNA markers for genome diagnostics of grain legumes. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes, CRC Press, New York, pp 497–557

    Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius L.) cultivars by DNA fingerprints. Euphytica 146:67–76. doi:10.1007/s10681-005-8496-2

    Article  CAS  Google Scholar 

  • Sehgal D, Raina SN (2008c). DNA markers and germplasm resource diagnostics: new perspectives in crop improvement and conservation strategies. In: Arya ID, Arya S (eds) Utilization of biotechnology in plant sciences. Rastogi Press, Meerut, India, pp 39–54

    Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat Triticum turgidum L.subsp. durum (Desf.) Husn. Theor Appl Genet 104:350–357. doi:10.1007/s001220100714

    Article  PubMed  CAS  Google Scholar 

  • Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693. doi:10.1007/s00122-004-1797-3

    Article  PubMed  CAS  Google Scholar 

  • Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, Katzir N (2000) Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 115:225–241. doi:10.1023/A:1004054014174

    Article  CAS  Google Scholar 

  • Steinger T, Haldimann P, Leiss KA, Müller-Schärer H (2002) Does natural selection promote population divergence? a comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits. Mol Ecol 11:2583–2590. doi:10.1046/j.1365-294x.2002.01653.x

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposons-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831. doi:10.1007/s00122-004-1837-z

    Article  PubMed  CAS  Google Scholar 

  • Thein SI, Wallace RR (1986) The use of synthetic oligonucleotides as specific hybridization probes in the diagnosis of genetic disorders. In: Davis KE (ed) Human genetic diseases: a practical approach. IRL, Oxford, pp 33–50

    Google Scholar 

  • Tosti N, Negri V (2005) On-going on-farm microevolutionary processes in neighbouring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283. doi:10.1007/s00122-005-1964-1

    Article  PubMed  CAS  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255. doi:10.1007/s00122-003-1246-8

    Article  PubMed  CAS  Google Scholar 

  • Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    PubMed  CAS  Google Scholar 

  • Virk PS, Zhu J, Newbury HJ, Bryan GJ, Jackson MT, Ford-Llyod BV (2000) Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112:275–284. doi:10.1023/A:1003952720758

    Article  CAS  Google Scholar 

  • Weiss EA (1971) Castor, sesame and safflower. Leonard Hill Books/University Press, Aberdeen, London, pp 529–774

    Google Scholar 

  • Weiss EA (1983) Oilseed crops. Longman Group Limited, London, pp 216–281

    Google Scholar 

  • Yee E, Kidwell KK, Sills GR, Lumpkin TA (1999) Diversity among selected Vigna angularis (Azuki) accessions on the basis of RAPD and AFLP markers. Crop Sci 39:268–275

    CAS  Google Scholar 

  • Zeid M, Schön C, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107:1304–1314. doi:10.1007/s00122-003-1350-9

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R et al (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314. doi:10.1007/s00122-005-1967-y

    Article  PubMed  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the United States Department of Agriculture (USDA) for supplying seed samples. This work was supported, in part, by Department of Biotechnology and Council of Scientific and Industrial Research, Ministry of Science and Technology, Government of India, and by the special coordination funds of Science and Technology Agency of the Japan Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soom Nath Raina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sehgal, D., Rajpal, V.R., Raina, S.N. et al. Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135, 457–470 (2009). https://doi.org/10.1007/s10709-008-9292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9292-4

Keywords

Navigation