Skip to main content

Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology (FTLD-TDP) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. The relevance of these pathological subtypes is supported by the presence of relatively specific clinical and genetic correlations. Recent evidence suggests that the different patterns of pathology are a reflection of biochemical differences in the pathological TDP-43 species, each of which is influenced by differing genetic factors. As a result, patient FTLD-TDP subtype may be an important factor to consider when developing biomarkers and targeted therapies for frontotemporal dementia. In this chapter, we first describe the pathological features, clinical and genetic correlations of the currently recognized FTLD-TDP subtypes. We then discuss a number of novel patterns of TDP-43 pathology. Finally, we provide an overview of what is currently known about the biochemical basis of the different FTLD-TDP subtypes and how this may explain the observed phenotypic and pathological heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woollacott IO, Rohrer JD (2016) The clinical spectrum of sporadic and familial forms of frontotemporal dementia. J Neurochem 138(Suppl 1):6–31

    Article  CAS  PubMed  Google Scholar 

  2. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R (2016) Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 138(Suppl 1):32–53

    Article  CAS  PubMed  Google Scholar 

  3. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117(1):15–18

    Article  PubMed  Google Scholar 

  4. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119(1):1–4

    Article  PubMed  Google Scholar 

  5. Mackenzie IR, Shi J, Shaw CL, Duplessis D, Neary D, Snowden JS et al (2006) Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathol 112(5):551–559

    Article  PubMed  Google Scholar 

  6. Mackenzie IR, Baborie A, Pickering-Brown S, Du Plessis D, Jaros E, Perry RH et al (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112(5):539–549

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A et al (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169(4):1343–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, Drachman DA et al (2006) Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol 65(6):571–581

    Article  CAS  PubMed  Google Scholar 

  9. Holm IE, Englund E, Mackenzie IR, Johannsen P, Isaacs AM (2007) A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 66(10):884–891

    Article  PubMed  Google Scholar 

  10. Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129(Pt 11):3081–3090

    Article  PubMed  Google Scholar 

  11. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  12. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  13. Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ et al (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171(1):227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davidson Y, Kelley T, Mackenzie IR, Pickering-Brown S, Du Plessis D, Neary D et al (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113(5):521–533

    Article  CAS  PubMed  Google Scholar 

  15. Mackenzie IR, Neumann M (2017) Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol 134(1):79–96

    Article  CAS  PubMed  Google Scholar 

  16. Laferriere F, Maniecka Z, Perez-Berlanga M, Hruska-Plochan M, Gilhespy L, Hock EM et al (2019) TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci 22(1):65–77

    Article  CAS  PubMed  Google Scholar 

  17. Pottier C, Ren Y, Perkerson RB 3rd, Baker M, Jenkins GD, van Blitterswijk M et al (2019) Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 137(6):879–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M et al (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135(Pt 11):3380–3391

    Article  PubMed  Google Scholar 

  19. Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113

    Article  PubMed  PubMed Central  Google Scholar 

  21. Josephs KA, Stroh A, Dugger B, Dickson DW (2009) Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 118(3):349–358

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mackenzie IR, Neumann M (2020) Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases. Acta Neuropathol 139(1):83–98

    Article  CAS  PubMed  Google Scholar 

  23. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM et al (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122(2):137–153

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perry DC, Brown JA, Possin KL, Datta S, Trujillo A, Radke A et al (2017) Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 140(12):3329–3345

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rohrer JD, Lashley T, Holton J, Revesz T, Urwin H, Isaacs AM et al (2011) The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 82(12):1405–1407

    Article  PubMed  Google Scholar 

  26. Snowden JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AM et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135(Pt 3):693–708

    Article  PubMed  PubMed Central  Google Scholar 

  27. Al-Obeidi E, Al-Tahan S, Surampalli A, Goyal N, Wang AK, Hermann A et al (2018) Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin Genet 93(1):119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD et al (2007) TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 66(2):152–157

    Article  PubMed  Google Scholar 

  29. Bigio EH, Weintraub S, Rademakers R, Baker M, Ahmadian SS, Rademaker A et al (2013) Frontotemporal lobar degeneration with TDP-43 proteinopathy and chromosome 9p repeat expansion in C9ORF72: clinicopathologic correlation. Neuropathology 33(2):122–133

    Article  CAS  PubMed  Google Scholar 

  30. Boeve BF, Boylan KB, Graff-Radford NR, DeJesus-Hernandez M, Knopman DS, Pedraza O et al (2012) Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135(Pt 3):765–783

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mahoney CJ, Beck J, Rohrer JD, Lashley T, Mok K, Shakespeare T et al (2012) Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135(Pt 3):736–750

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murray ME, Dejesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122(6):673–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirsch-Reinshagen V, Alfaify OA, Hsiung GR, Pottier C, Baker M, Perkerson RB 3rd et al (2019) Clinicopathologic correlations in a family with a TBK1 mutation presenting as primary progressive aphasia and primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 20:568–575

    Google Scholar 

  35. Koriath CA, Bocchetta M, Brotherhood E, Woollacott IO, Norsworthy P, Simon-Sanchez J et al (2017) The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: a longitudinal case report. Alzheimers Dement (Amst) 6:75–81

    Article  Google Scholar 

  36. Lamb R, Rohrer JD, Real R, Lubbe SJ, Waite AJ, Blake DJ et al (2019) A novel TBK1 mutation in a family with diverse frontotemporal dementia spectrum disorders. Cold Spring Harb Mol Case Stud 5(3):a003913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alafuzoff I, Pikkarainen M, Neumann M, Arzberger T, Al-Sarraj S, Bodi I et al (2015) Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. J Neural Transm 122(7):957–972

    Article  PubMed  Google Scholar 

  38. Pikkarainen M, Hartikainen P, Alafuzoff I (2008) Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions visualized with ubiquitin-binding protein p62 immunohistochemistry. J Neuropathol Exp Neurol 67(4):280–298

    Article  PubMed  Google Scholar 

  39. Shinagawa S, Naasan G, Karydas AM, Coppola G, Pribadi M, Seeley WW et al (2015) Clinicopathological study of patients with C9ORF72-associated frontotemporal dementia presenting with delusions. J Geriatr Psychiatry Neurol 28(2):99–107

    Article  PubMed  Google Scholar 

  40. Lee EB, Porta S, Michael Baer G, Xu Y, Suh E, Kwong LK et al (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134(1):65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeuchi R, Tada M, Shiga A, Toyoshima Y, Konno T, Sato T et al (2016) Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathol Commun 4(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tan RH, Guennewig B, Dobson-Stone C, Kwok JBJ, Kril JJ, Kiernan MC et al (2019) The underacknowledged PPA-ALS: a unique clinicopathologic subtype with strong heritability. Neurology 92(12):e1354–e1e66

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong RA, Ellis W, Hamilton RL, Mackenzie IR, Hedreen J, Gearing M et al (2010) Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm (Vienna) 117(2):227–239

    Article  Google Scholar 

  44. Nishihira Y, Gefen T, Mao Q, Appin C, Kohler M, Walker J et al (2019) Revisiting the utility of TDP-43 immunoreactive (TDP-43-ir) pathology to classify FTLD-TDP subtypes. Acta Neuropathol 138(1):167–169

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clark CN, Quaegebeur A, Nirmalananthan N, MacKinnon AD, Revesz T, Holton JL et al (2019) Foix-Chavany-Marie syndrome due to type E TDP43 pathology. Neuropathol Appl Neurobio l46(3):292–295.

    Google Scholar 

  46. Ihori N, Araki S, Ishihara K, Kawamura M (2006) A case of frontotemporal lobar degeneration with progressive dysarthria. Behav Neurol 17(2):97–104

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee EB, Lee VM, Trojanowski JQ, Neumann M (2008) TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol 115(3):305–311

    Article  CAS  PubMed  Google Scholar 

  48. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120

    Article  CAS  PubMed  Google Scholar 

  49. Walker AK, Daniels CM, Goldman JE, Trojanowski JQ, Lee VM, Messing A (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34(19):6448–6458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL et al (2009) DCTN1 mutations in Perry syndrome. Nat Genet 41(2):163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishima T, Koga S, Lin WL, Kasanuki K, Castanedes-Casey M, Wszolek ZK et al (2017) Perry syndrome: a distinctive type of TDP-43 Proteinopathy. J Neuropathol Exp Neurol 76(8):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR et al (2014) Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 127(3):441–450

    Article  CAS  PubMed  Google Scholar 

  53. Josephs KA, Mackenzie I, Frosch MP, Bigio EH, Neumann M, Arai T et al (2019) LATE to the PART-y. Brain 142(9):e47

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142(6):1503–1527

    Article  PubMed  PubMed Central  Google Scholar 

  55. Buratti E (2018) TDP-43 post-translational modifications in health and disease. Expert Opin Ther Targets 22(3):279–293

    Article  CAS  PubMed  Google Scholar 

  56. Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173(1):182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 Proteinopathies. J Biol Chem 284(13):8516–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18(18):3353–3364

    Article  CAS  PubMed  Google Scholar 

  59. Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27(39):10530–10534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M et al (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110(3):1082–1094

    Article  CAS  PubMed  Google Scholar 

  61. Herskowitz JH, Gozal YM, Duong DM, Dammer EB, Gearing M, Ye K et al (2012) Asparaginyl endopeptidase cleaves TDP-43 in brain. Proteomics 12(15–16):2455–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, Iwata N et al (2012) A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nat Commun 3:1307

    Article  PubMed  CAS  Google Scholar 

  63. Xiao S, Sanelli T, Chiang H, Sun Y, Chakrabartty A, Keith J et al (2015) Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol 130(1):49–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, Suzuki N (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 285(1):608–619

    Article  CAS  PubMed  Google Scholar 

  65. Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 106(18):7607–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berning BA, Walker AK (2019) The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front Neurosci 13:335

    Article  PubMed  PubMed Central  Google Scholar 

  67. Josephs KA, Zhang YJ, Baker M, Rademakers R, Petrucelli L, Dickson DW (2019) C-terminal and full length TDP-43 specie differ according to FTLD-TDP lesion type but not genetic mutation. Acta Neuropathol Commun 7(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64(1):60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H et al (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 382(2):405–409

    Article  CAS  PubMed  Google Scholar 

  70. Inukai Y, Nonaka T, Arai T, Yoshida M, Hashizume Y, Beach TG et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582(19):2899–2904

    Article  CAS  PubMed  Google Scholar 

  71. Tan RH, Shepherd CE, Kril JJ, McCann H, McGeachie A, McGinley C et al (2013) Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43. Acta Neuropathol Commun 1:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim KY, Lee HW, Shim YM, Mook-Jung I, Jeon GS, Sung JJ (2015) A phosphomimetic mutant TDP-43 (S409/410E) induces Drosha instability and cytotoxicity in neuro 2A cells. Biochem Biophys Res Commun 464(1):236–243

    Article  CAS  PubMed  Google Scholar 

  73. Brady OA, Meng P, Zheng Y, Mao Y, Hu F (2011) Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem 116(2):248–259

    Article  CAS  PubMed  Google Scholar 

  74. Li HY, Yeh PA, Chiu HC, Tang CY, Tu BP (2011) Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS One 6(8):e23075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seyfried NT, Gozal YM, Dammer EB, Xia Q, Duong DM, Cheng D et al (2010) Multiplex SILAC analysis of a cellular TDP-43 proteinopathy model reveals protein inclusions associated with SUMOylation and diverse polyubiquitin chains. Mol Cell Proteomics 9(4):705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dammer EB, Fallini C, Gozal YM, Duong DM, Rossoll W, Xu P et al (2012) Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 7(6):e38658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hans F, Eckert M, von Zweydorf F, Gloeckner CJ, Kahle PJ (2018) Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 293(41):16083–16099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111 013284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y et al (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohen TJ, Hwang AW, Restrepo CR, Yuan CX, Trojanowski JQ, Lee VM (2015) An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 6:5845

    Article  CAS  PubMed  Google Scholar 

  82. Cohen TJ, Hwang AW, Unger T, Trojanowski JQ, Lee VM (2012) Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. EMBO J 31(5):1241–1252

    Article  CAS  PubMed  Google Scholar 

  83. Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–561

    Article  CAS  PubMed  Google Scholar 

  84. Kawakami I, Arai T, Hasegawa M (2019) The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 138(5):751–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hasegawa M, Nonaka T, Tsuji H, Tamaoka A, Yamashita M, Kametani F et al (2011) Molecular dissection of TDP-43 proteinopathies. J Mol Neurosci 45(3):480–485

    Article  CAS  PubMed  Google Scholar 

  86. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134

    Article  CAS  PubMed  Google Scholar 

  87. Porta S, Xu Y, Restrepo CR, Kwong LK, Zhang B, Brown HJ et al (2018) Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 9(1):4220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Davidson YS, Robinson AC, Flood L, Rollinson S, Benson BC, Asi YT et al (2017) Heterogeneous ribonuclear protein E2 (hnRNP E2) is associated with TDP-43-immunoreactive neurites in semantic dementia but not with other TDP-43 pathological subtypes of frontotemporal lobar degeneration. Acta Neuropathol Commun 5(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kattuah W, Rogelj B, King A, Shaw CE, Hortobagyi T, Troakes C (2019) Heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2) is a component of TDP-43 aggregates specifically in the a and C pathological subtypes of frontotemporal lobar degeneration. Front Neurosci 13:551

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NOMIS foundation (MN) and the Canadian Institutes of Health Research (IRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Mackenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neumann, M., Lee, E.B., Mackenzie, I.R. (2021). Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_13

Download citation

Publish with us

Policies and ethics