Skip to main content

Advertisement

Log in

Molecular Dissection of TDP-43 Proteinopathies

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

TDP-43 has been identified as a major component of ubiquitin-positive tau-negative cytoplasmic inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and in amyotrophic lateral sclerosis (ALS). We raised antibodies to phosphopeptides representing 36 out of 64 candidate phosphorylation sites of human TDP-43 and showed that the antibodies to pS379, pS403/404, pS409, pS410 and pS409/410 labeled the inclusions, but not the nuclei. Immunoblot analyses demonstrated that the antibodies recognized TDP-43 at ~45 kDa, smearing substances and 18–26 kDa C-terminal fragments. Furthermore, the band patterns of the C-terminal fragments differed between neuropathological subtypes, but were indistinguishable between brain regions and spinal cord in each individual patient. Protease treatment of Sarkosyl-insoluble TDP-43 suggests that the different band patterns of the C-terminal fragments reflect different conformations of abnormal TDP-43 molecules between the diseases. These results suggest that molecular species of abnormal TDP-43 are different between the diseases and that they propagate from affected cells to other cells during disease progression and determine the clinicopathological phenotypes of the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity inhippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Ikeda K, Akiyama H, Nonaka T, Hasegawa M, Ishiguro K et al (2004) Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann Neurol 55:72–79

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Mackenzie IR, Hasegawa M et al (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117:125–136

    Article  PubMed  CAS  Google Scholar 

  • Ayala YM, Pantano S, D’Ambrogio A et al (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588

    Article  PubMed  CAS  Google Scholar 

  • Barmada SJ, Finkbeiner S (2010) Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci 21:251–272 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Benajiba L, Le Ber I, Camuzat A, Lacoste M et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65:470–473

    Article  PubMed  CAS  Google Scholar 

  • Berriman J, Serpell LC, Oberg KA et al (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 100:9034–9038

    Article  PubMed  CAS  Google Scholar 

  • Borroni B, Bonvicini C, Alberici A et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30:E974–E983

    Article  PubMed  CAS  Google Scholar 

  • Bose JK, Wang IF, Hung L, Tarn WY, Shen CK (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J Biol Chem 283:28852–28859

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail. J Biol Chem 280:37572–37584

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  Google Scholar 

  • Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–690

    Article  PubMed  CAS  Google Scholar 

  • Freeman SH, Spires-Jones T, Hyman BT, Growdon JH, Frosch MP (2008) TAR-DNA binding protein 43 in Pick disease. J Neuropathol Exp Neurol 67:62–67

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro H, Uchikado H, Arai T et al (2009) Accumulation of phosphorylated TDP-43 in brains of patients with argyrophilic grain disease. Acta Neuropathol 117:151–158

    Article  PubMed  CAS  Google Scholar 

  • Geser F, Winton MJ, Kwong LK et al (2007) Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 115:133–145

    Article  PubMed  Google Scholar 

  • Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641

    Article  PubMed  Google Scholar 

  • Gitcho MA, Baloh RH, Chakraverty S et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Arai T, Akiyama H et al (2007) TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130:1386–1394

    Article  PubMed  Google Scholar 

  • Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70

    Article  PubMed  CAS  Google Scholar 

  • Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294

    Article  PubMed  CAS  Google Scholar 

  • Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  • Lin WL, Dickson DW (2008) Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol 116:205–213

    Article  PubMed  CAS  Google Scholar 

  • Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229

    Article  PubMed  CAS  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  • Nishihira Y, Tan CF, Hoshi Y et al (2009) Sporadic amyotrophic lateral sclerosis of long duration is associated with relatively mild TDP-43 pathology. Acta Neuropathol 117:45–53

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Arai T, Buratti E, Baralle FE, Akiyama H, Hasegawa M (2009a) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583:394–400

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009b) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of alpha-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885–34898

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1999) Glutamine repeats and neurodegenerative diseases. Brain Res Bull 50:467

    Article  PubMed  CAS  Google Scholar 

  • Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18:R156–R162

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kawashima A, Ruberu NN, Fujiwara H et al (2003) Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62:644–654

    PubMed  CAS  Google Scholar 

  • Serpell LC, Berriman J, Jakes R et al (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97:4897–4902

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  • Uryu K, Nakashima-Yasuda H, Forman MS et al (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67:555–564

    Article  PubMed  CAS  Google Scholar 

  • Van Deerlin VM, Leverenz JB, Bekris LM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416

    Article  PubMed  Google Scholar 

  • Yamashita, M., Nonaka, T., Arai, T et al (2009) Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett 583:2419–24

    Article  PubMed  CAS  Google Scholar 

  • Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 Mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542

    Article  PubMed  CAS  Google Scholar 

  • Yonetani M, Nonaka T, Masuda M et al (2009) Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 284:7940–7950

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, M., Nonaka, T., Tsuji, H. et al. Molecular Dissection of TDP-43 Proteinopathies. J Mol Neurosci 45, 480–485 (2011). https://doi.org/10.1007/s12031-011-9571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9571-x

Keywords

Navigation