Skip to main content

Development and Applications of Transplastomic Plants; A Way Towards Eco-Friendly Agriculture

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

With distribution of genetic materials and advance molecular characteristics, the chloroplast is prokaryotic compartments within the eukaryotic plants that have turned into a crucial source for the genetic engineering and transplastomic plants are becoming more popular means of agricultural development with elevated crop yield. To address global agricultural problems, genetic modification of crop plants is a rapid and promising solution to adapt the environment-friendly and well-controlled farming system. The transplastomic plant with high accumulation of foreign proteins (up to 45–46% TSP) and stable transgene expression with gene containment can be a unique choice for the agricultural innovation of coming centuries. Although the transplastomic plants still facing encumber to ensure the full potential exploitation and expansion as an economical means, the removal of hardness and obstacles of this technology and commercialization can contribute for the sustainable development of future agriculture. In this book chapter, we intend to recapitulate the up to date development and achievement of transplastomic plant including gene transfer procedures in plastid genomes, regulable expression of plastid transgenes, plant trait improvement by foreign gene expression, biopharmaceuticals production, engineering of metabolic pathways in plant, study of transformation mediated RNA editing technologies, bio-safety issues and public concerns on transplastomic plants and overall beneficial aspects. We believe that the utilization of transplastomic plants will ensure an eco-friendly approach in agriculture with minimized hazards and public concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad N, Michoux F, Nixon PJ (2012) Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. PLoS One 7:e41722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Babili S, Beyer P (2005) Golden Rice–five years on the road–five years to go? Trends Plant Sci 1:565–573

    Article  CAS  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso H, Blayney MJ, Beck JL (2009) Whitney SM. Substrate-induced assembly of Methanococcoides burtonii D-ribulose-1,5-bisphosphate carboxylase/oxygenase dimers into decamers. Int. J Biol Chem 284:33876–33882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa T, Chong DK, Merritt JL, Langridge WH (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6:403–413

    Article  CAS  PubMed  Google Scholar 

  • Arntzen C (2015) Plant-made pharmaceuticals: from ‘Edible Vaccines’ to Ebola therapeutics. Plant Biotechnol J 13:1013

    Article  PubMed  PubMed Central  Google Scholar 

  • Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low frequency leakage of plastids via pollen may be universal in plants. Plant J 52:817–823

    Google Scholar 

  • Bansal KC, Singh AK, Wani SH (2012) Plastid transformation for abiotic stress tolerance in plants. In: Plant salt tolerance: methods and protocols. Humana Press, Totowa, pp 351–358

    Chapter  Google Scholar 

  • Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R (2014a) Engineering chloroplasts for high-level foreign protein expression. In: Chloroplast biotechnology. Humana Press, Totowa, pp 93–106

    Chapter  Google Scholar 

  • Bock R (2014b) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    Article  CAS  PubMed  Google Scholar 

  • Bock R, Koop HU (1997) Extraplastidic site-specific factors mediate RNA editing in chloroplasts. The EMBO J 16:3282–3288

    Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Budzianowski J (2015) Tobacco against Ebola virus disease. Przegl Lek 72:567–571

    PubMed  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  PubMed  Google Scholar 

  • Ceccoli RD, Blanco NE, Segretin ME, Melzer M, Hanke GT, Scheibe R, Hajirezaei MR, Bravo-Almonacid FF, Carrillo N (2012) Flavodoxin displays dose-dependent effects on photosynthesis and stress tolerance when expressed in transgenic tobacco plants. Planta 236:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 Bt gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 4:481

    Article  CAS  Google Scholar 

  • Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515

    Article  CAS  PubMed  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. PNAS 100:4510–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cieslewicz MJ, Kasper DL, Wang Y, Wessels MR (2001) Functional analysis in type Ia group B Streptococcusof a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem 276:139–146

    Article  CAS  PubMed  Google Scholar 

  • Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, Curran NM, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ (2008) Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res 17:769–782

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (1993) Foreign gene expression in chloroplasts of higher plants mediated by tungsten particle bombardment. Method Enzymol 217:536–556

    Article  CAS  Google Scholar 

  • Daniell H, McFadden BA (1987) Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts. PNAS 84:6349–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71

    Article  PubMed  PubMed Central  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17

    Article  CAS  PubMed  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DelCampo EM (2009) Post-transcriptional control of chloroplast gene expression. GRSB-S2080

    Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    Article  CAS  PubMed  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski JP, Ferullo JM, Pelissier B, Sailland A (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol 5:118–133

    Article  CAS  Google Scholar 

  • Dunne A, Maple-Grødem J, Gargano D, Haslam RP, Napier JA, Chua NH, Russell R, Møller SG (2014) Modifying fatty acid profiles through a new cytokinin-based plastid transformation system. Plant J 80:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Brosch M, Schäfer A, Braun S, Krupinska K (2005) Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenyl-pyruvate dioxygenase. J. Plant Physiol 162:738–742

    Article  CAS  Google Scholar 

  • Farran I, McCarthy-Suárez I, Río-Manterola F, Mansilla C, Lasarte JJ, Mingo-Castel ÁM (2010) The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts. Planta 231:977–990

    Article  CAS  PubMed  Google Scholar 

  • Fouad WM, Altpeter F (2009) Transplastomic expression of bacterial L-aspartate-α-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res 18:707–718

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N (2013) Case studies: a hard look at GM crops. Nature 497:24

    Article  CAS  PubMed  Google Scholar 

  • Gisby MF, Mudd EA, Day A (2012) Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. Plant Physiol 160:2219–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanasekaran T, Karcher D, Nielsen AZ, Martens HJ, Ruf S, Kroop X, Olsen CE, Motawie MS, Pribil M, Møller BL, Bock R (2016) Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J Exp Bot 67:2495–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio/Technology 11:95

    CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD (1991) A small chloroplast RNA may be required for transsplicing in Chlamydomonas reinhardtii. Cell 65:135–144

    Google Scholar 

  • Greiner S, Sobanski J, Bock R (2015) Why are most organelle genomes transmitted maternally? BioEssays 37:80–94

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Tonkyn JC (1993) Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12:19–55

    Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 93–113

    Chapter  Google Scholar 

  • Hammerling U (2013) The centennial of vitamin A: a century of research in retinoids and carotenoids. FASEB J 27:3887–3890

    Article  CAS  PubMed  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Maoka T, Osawa A, Hattan JI, Kanamoto H, Shindo K, Otomatsu T, Misawa N (2014) Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids. Transgenic Res 23:303–315

    Article  CAS  PubMed  Google Scholar 

  • Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412

    Article  Google Scholar 

  • Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    Article  CAS  PubMed  Google Scholar 

  • Hatziloukas E, Panopoulos NJ (1992) Origin, structure, and regulation of argK, encoding the phaseolotoxin-resistant ornithine carbamoyltransferase in Pseudomonas syringae pv. Phaseolicola, and functional expression of argK in transgenic tobacco. J Bacteriol Res 174:5895–5909

    Article  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Börner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    Article  CAS  PubMed  Google Scholar 

  • Hegedűs A, Janda T, Horváth GV, Dudits D (2008) Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. J. Plant Physiol 165:1647–1651

    Article  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Int J Environ Sci 41:8439–8446

    CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172

    Article  CAS  PubMed  Google Scholar 

  • Jaffé B, Kovács K, Andras C, Bódi Z, Liu Z, Fray RG (2008) Methylation of chloroplast DNA does not affect viability and maternal inheritance in tobacco and may provide a strategy towards transgene containment. Plant Cell Rep 27:1377–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol 10:313–327

    Article  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa KI (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  CAS  PubMed  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Bio 64:137–143

    Article  CAS  Google Scholar 

  • Kohli A, Miro B, Twyman RM (2010) Transgene integration, expression and stability in plants: strategies for improvements. In: Transgenic crop plants. Springer, Berlin/Heidelberg, pp 201–237

    Chapter  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. PNAS 96:1840–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V (2010) Autoluminescent plants. PLoS One 5:e15461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confer enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012a) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Amit D, Daniell H (2012b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56(2):203–216

    Article  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125(1):430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Plant Breed 11:1–13

    Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401

    CAS  PubMed  Google Scholar 

  • Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections Plant Biotechnol J 9:100–115

    Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, Van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  CAS  PubMed  Google Scholar 

  • Liere K, Weihe A, Börner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J. Plant Physiol 168:1345–1360

    Article  CAS  Google Scholar 

  • Liu CW, Lin CC, Chen JJ, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    Article  PubMed  CAS  Google Scholar 

  • Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. PNAS 110:E623–E632

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz KA, Bosacchi MH, Maliga P (2006) Plastid marker-gene excision by transiently expressed CRE recombinase. Plant J 45:447–456

    Article  CAS  PubMed  Google Scholar 

  • Madanala R, Gupta V, Pandey AK, Srivastava S, Pandey V, Singh PK, Tuli R (2015) Tobacco chloroplasts as bioreactors for the production of recombinant superoxide dismutase in plants, an industrially useful enzyme. Plant Mol Biol 33:1107–1115

    Article  CAS  Google Scholar 

  • Madoka Y, Tomizawa KI, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol 43:1518–1525

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (1993) Towards plastid transformation in flowering plants. Trends Biotechnol 11:101–107

    Google Scholar 

  • Maliga P (2001) Plastid engineering bears fruit. Nat Biotechnol 19:826–827

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    Article  CAS  PubMed  Google Scholar 

  • Maliga P, Tungsuchat-Huang T (2014) Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. In: Chloroplast biotechnology. Humana Press, Totowa, pp 147–163

    Chapter  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matto AK, Shukla V, Fatima T, Handa AK, Yachha SK (2010) Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. In Bio-Farms for Nutraceuticals. Springer, Boston, MA, pp 122–143

    Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. PNAS 100:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13:362

    CAS  Google Scholar 

  • Mirza SA, Khan MS (2013) Characterisation of synthetically developed cry1Ab gene in transgenic tobacco chloroplasts. Turk J Bot 37:506–511

    CAS  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:329–336

    Article  CAS  Google Scholar 

  • Newell-McGloughlin M (2010) Modifying agricultural crops for improved nutrition. New Biotechnol 27:494–504

    Article  CAS  Google Scholar 

  • Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa KI (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    Article  CAS  PubMed  Google Scholar 

  • Pasoreck EK, Su J, Silverman IM , Gosai SJ, Gregory, BD, Yuan JS and Daniell H (2016) Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off‐target pathways through metabolite signalling. Plant Biotechnol J 14:1862–1875

    Google Scholar 

  • Poage M, Le Martret B, Jansen MA, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76:371–384

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Dong Y, von Arnim AG (2003) Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. Plant Mol Biol 52:217–231

    Article  CAS  PubMed  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed 132:437–445

    Google Scholar 

  • Reddy VS, Leelavathi S, Selvapandiyan A, Raman R, Giovanni F, Shukla V, Bhatnagar RK (2002) Analysis of chloroplast transformed tobacco plants with cry1Ia5 under rice psbA transcriptional elements reveal high level expression of Bt toxin without imposing yield penalty and stable inheritance of transplastome. Mol Breeding 9:259–269

    Article  CAS  Google Scholar 

  • Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564

    Article  CAS  PubMed  Google Scholar 

  • Roh KH, Choi SB, Kwak BK, Seo SC, Lee SB (2014) A single cupredoxin azurin production in transplastomic tobacco. Plant Biotechnol Rep 8:421–429

    Article  Google Scholar 

  • Roudsari M, Salmanian AH, Mousavi A, Hashemi Sohi H, Jafari M (2009) Regeneration of glyphosphate-tolerant Nicotiana tabacum after plastid transformation with a mutated variant of bacterial aroA gene. Iran J Biotechnol 7:247–253

    CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnol 19:870

    Article  CAS  Google Scholar 

  • Ruhlman TA, Rajasekaran K, Cary JW (2014) Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. Plant Sci J 228:98–106

    Article  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol 138:1232–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    Google Scholar 

  • Rumeau D, Bécuwe Linka N, Beyly A, Carrier P, Cuiné S, Genty B, Medgyesy P, Horvath E, Peltier G (2004) Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit. Plant Biotechnol J 2:389–399

    Article  CAS  PubMed  Google Scholar 

  • Saxena B, Subramaniyan M, Malhotra K, Bhavesh NS, Potlakayala SD, Kumar S (2014) Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J Biosci 39:33–41

    Article  CAS  PubMed  Google Scholar 

  • Scheid OM, Paszkowski J, Potrykus I (1991) Reversible inactivation of a transgene in Arabidopsis thaliana. MGG 28:104–112

    Google Scholar 

  • Scotti N, Cardi T (2014) Transgene-induced pleiotropic effects in transplastomic plants. Biotechnol Lett 36:229–239

    Article  CAS  PubMed  Google Scholar 

  • Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF (2012) Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro. Planta 235:807–818

    Article  CAS  PubMed  Google Scholar 

  • Sharwood RE, Von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source rubiscos and can support tobacco growth. Plant Physiol 146:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  • Sigeno A, Hayashi S, Terachi T, Yamagishi H (2009) Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion. Plant Cell Rep 28:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Sikdat SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  Google Scholar 

  • Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113–119

    Article  CAS  PubMed  Google Scholar 

  • Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32:245–272

    Article  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechol 18:333

    Article  CAS  Google Scholar 

  • Steward G (2000) A new breed of superweed. The Globe and Mail Toronto The Woodbridge Company Available: http://www.theglobeandmail.com/technology/science/a-new-breed-of-superweed/article18423734/?page=all. Retrieved on 2 March 2016

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga PA (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. PNAS 90:913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. PNAS 104:7003–7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. PNAS 87:8526–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (1993) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. PNAS 110:E15–E22

    Article  Google Scholar 

  • Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673

    Google Scholar 

  • Tran M, Van C, Barrera, DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. PNAS 110:E15–E22

    Google Scholar 

  • Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res 31:1174–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmann L, Mimouni V, Blanckaert V, Pasquet V, Schoefs B, Chénais B (2014) The polyunsaturated fatty acids from microalgae as potential sources for health and disease. In: Angel Catalá A (ed) Polyunsaturated fatty acids: sources, antioxidant properties, and health benefits. Nova Publishers, New York, pp 23–44

    Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779

    Article  CAS  PubMed  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. PNAS 107:6204–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesteg M, Hampl V, KrajÄ oviÄ J (2018) Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 64(2):365–387

    Article  PubMed  CAS  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. JGG 36:387–398

    CAS  Google Scholar 

  • Wang D, Lloyd AH, Timmis JN (2012) Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. PNAS 109:2444–2448

    Google Scholar 

  • Wani SH, Sah SK, Sági L, Solymosi K (2015) Transplastomic plants for innovations in agriculture. A review. Agron Sustain Dev 35(4):1391–1430

    Article  CAS  Google Scholar 

  • Wei Z, Liu Y, Lin C, Wang Y, Cai QA, Dong Y, Xing S (2011) Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 33:2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot 59:1909–1921

    Article  CAS  PubMed  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    Article  CAS  PubMed  Google Scholar 

  • Ye GN, Colburn SM, Xu CW, Hajdukiewicz PT, Staub JM (2003) Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance. Plant Physiol 133:402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Sci 287:303–305

    Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Brotherton JE, Widholm JM, Portis AR (2001) Targeting a nuclear anthranilate synthase α-subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol 127:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27(6):1113

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994

    Article  CAS  PubMed  Google Scholar 

  • Zubko MK, Zubko EI, Van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work in our laboratory on developing insect resistant Transplastomic potatoes is being supported by a grant (216O027) from the scientific and technological research council of Turkey (Tübitak). Md Jakir Hossain is scholarship holder from this grant. The support of Tübitak in terms of funding for our research activities is highly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.J., Bakhsh, A. (2020). Development and Applications of Transplastomic Plants; A Way Towards Eco-Friendly Agriculture. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_12

Download citation

Publish with us

Policies and ethics