Skip to main content
Log in

Generation of fertile transplastomic soybean

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendich, A. J. 1987. Why do chloroplasts and Mitochondria contain so many copies of their genome? BioEssays 6: 279–282.

    PubMed  Google Scholar 

  • Bock, R. and Hagemann, R. 2000. Extranuclear inheritance: plastid genetics: manipulation of plastid genomes and biotechnological applications. Progress Bot. 61: 76–90.

    Google Scholar 

  • Bogorad, L. 2000. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. TIBTECH. 18: 257–263.

    Google Scholar 

  • Boyton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B. and Sanford, J. C. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538.

    PubMed  Google Scholar 

  • Corneille, S., Lutz, K., Svab, Z. and Maliga, P. 2001. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site specific recombination system. Plant J. 27: 171–178.

    PubMed  Google Scholar 

  • Daniell, H., Datta, R., Varma, S., Gray, S. and Lee, S. B. 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16: 346–348.

    Google Scholar 

  • Daniell, H., Muthukumar, B. and Lee, S. B. 2001. Marker from transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. genet. 39: 109–116.

    PubMed  Google Scholar 

  • Daniell, H., Porobodessai, A., Prakash, C. S. and Moar, W. J. 1994. Engineering plants for stress tolerance via organelle genomes. Biochemical and cellular mecanisms of stress tolerance in plants, [edited by Cherry, J. H. ]NATO ASI Series Berlin 86: 589–604.

  • De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71–74.

    PubMed  Google Scholar 

  • Finer, J. J. and McMullen, M. D. 1991. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27: 175–182.

    Google Scholar 

  • Finer, J. J. and Nagasawa, A. 1988. Development of an embryogenic suspension culture of soybean (Glycine max (L. )Merrill. ). Plant Cell. Tissue Organ Culture 15: 125–136.

    Google Scholar 

  • Finer, J. J., Vain, P., Jones, M. W. and McMullen, M. D. 1992. Development of the Particle Inflow Gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323–328.

    Google Scholar 

  • Golds, T. J., Maliga, P. and Koop, H. U. 1993. Stable plastid transformation in PEG-treated chloroplasts of Nicotiana tabacum L. BioTechnology 11: 95–97.

    Google Scholar 

  • Goldschmidt-Clermont, M. 1991. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of chlamydomonas. Nucl. Acids. Res. 19: 4083–4089.

    PubMed  Google Scholar 

  • Hajdukiewicz, P. T. J., Gilbertson, L. and Staub, J. M. 2001. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 27: 161–170.

    PubMed  Google Scholar 

  • Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochimie 82: 655–666.

    PubMed  Google Scholar 

  • Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H. and Hu, Z. M. 2003. Chloroplast transformation in oilseed rape. Transgenic Res. 12: 111–114.

    PubMed  Google Scholar 

  • Iamtham, S. and Day, A. 2000. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18: 1172–1176.

    PubMed  Google Scholar 

  • Khan, M. S. and Maliga, P. 1999. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17: 910–915.

    PubMed  Google Scholar 

  • Knoblauch, M., Hibberd, J. M., Gray, J. C. and van Bel, A. J. E. 1999. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat. Biotechnol. 17: 906–910.

    PubMed  Google Scholar 

  • Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F. and Moar, W. J. 1999. Overexpression of the Bacillus thuringiensis (Bt)Cry2Aa2 protein chloroplasts confers resistance to plant against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96: 1840–1845.

    PubMed  Google Scholar 

  • Maliga, P. 2002. Engineering the plastid genome of higher plants. Curr Opin Plant Biol. 5: 164–172.

    PubMed  Google Scholar 

  • Maliga, P. 2003. Progress towards commercialization of plastid transformation technology. TIBTECH. 21: 20–28.

    Google Scholar 

  • Maliga, P. 2004. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55: 289–313.

    PubMed  Google Scholar 

  • Mogensen, H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83: 383–404.

    Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioessays with tobacco tissue culture. Plant Physiol. 15: 473–497.

    Google Scholar 

  • O'Neill, C., Horvath, GV., Horvath, E., Dix, P. J. and Medgyesy, P. 1993. Chloroplast transformation in plants: polyethylene glycol (PEG)treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3: 729–738.

    PubMed  Google Scholar 

  • Polans, N. O., Corriveau, J. L. and Coleman, A. W. 1990. Plastid inheritance in Pisum sativum L. Curr genet. 18: 477–480.

    PubMed  Google Scholar 

  • Ruf, S., Hermann, M., Berger, I. J., Carrer, H. and Bock, R. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol. 19: 870–875.

    PubMed  Google Scholar 

  • Russel, J. A., Roy, M. K. and Sanford, J. C. 1992. Major improvements in biolistic transformation of suspensioncultured tobacco cells. In Vitro Cell. Dev. Biol. 28: 97–105.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Samoylov, V. M., Tucker, D. M., Thibaud-Nissen, F. and Parrott, W. A. 1998. A liquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 18: 49–54.

    Google Scholar 

  • Santare ´m, E. R. and Finer, J. J. 1999. Transformation of soybean (Glycine max (L. )Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell. Dev. Biol. Plant 35: 451–455.

    Google Scholar 

  • Serino, G. and Maliga, P. 1997. A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant J. 12: 697–701.

    PubMed  Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. and Sugiura, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2049.

    Google Scholar 

  • Sidorov, V. A., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T. J., Staub, J. M. and Nehra, N. S. 1999. Stable chloroplast transformation in potato: use of green. uorescent protein as a plastid marker. Plant J. 19: 209–216.

    PubMed  Google Scholar 

  • Sikdar, S. R., Serino, G., Chaudhuri, S. and Maliga, P. 1998. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18: 20–24.

    Google Scholar 

  • Skarjinskaia, M., Svab, Z. and Maliga, P. 2003. Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res. 12: 115–122.

    PubMed  Google Scholar 

  • Staub, J. M., Garcia, B., Graves, J., Hajdukiewicz, P. T. J., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J. A., Spatola, L., Ward, D., Ye, G. and Russell, D. A. 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18: 333–338.

    PubMed  Google Scholar 

  • Svab, Z. and Maliga, P. 1991. Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol. Gen. Genet. 228: 316–319.

    PubMed  Google Scholar 

  • Svab, Z., Hajdukiewicz, P. and Maliga, P. 1990. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526–8530.

    PubMed  Google Scholar 

  • Svab Z., and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.

    PubMed  Google Scholar 

  • Xu, D. H., Abe, J., Sakai, M., Kanazawa, A. and Shimamoto, Y. 2000. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its applications for the evolution of different chloroplast haplotypes. Theor. Appl. genet. 101: 724–732.

    Google Scholar 

  • Ye, G. N., Hajdukiewicz, P. T. J., Broyles, D., Rodriguez, D., Xu, C. W., Nehra, N. and Staub, J. M. 2001. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J. 25: 261–270.

    PubMed  Google Scholar 

  • Zhang, X. H., Portis, A. R. and Wildholm, J. M. 2001 a. Plastid Transformation of Soybean Suspension Cultures. J. Plant Biotechnol. 3: 39–44.

    Google Scholar 

  • Zhang, X. H., Wildholm, J. M. and Portis, A. R. Jr. 2001b. Photosynthetic properties of two di. erent soybean suspension cultures. J. Plant Physiol. 158: 357–365.

    Google Scholar 

  • Zhang, X. H., Brotherton, J. E., Wildholm, J. M. and Portis, A. R. Jr. 2001c. Targeting a nuclear anthranilate synthase a subunit gene to the tobacco plastid genome results in enhanced tryptophan biosynthesis. Return of a gene to its pre-endosymbiotic origin. Plant Physiol. 127: 131–141.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufourmantel, N., Pelissier, B., Garcon, F. et al. Generation of fertile transplastomic soybean. Plant Mol Biol 55, 479–489 (2004). https://doi.org/10.1007/s11103-004-0192-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0192-4

Navigation