Skip to main content

Plastome Engineering: Yesterday, Today, and Tomorrow

  • Chapter
  • First Online:
Sugarcane Biotechnology: Challenges and Prospects

Abstract

Plant transformation has made significant strides in last two decades with main focus on developing stress-tolerant crops and pharmaceutically important compounds for therapeutic purpose. There are many success stories describing the production of therapeutic proteins in large scale that are targeted to either nuclear or plastid genomes. The plastid genome (plastome) represents an attractive target for genetic engineering in crop plants. Transgenes integrated to plastome have several advantages like high expression levels, genes can be stacked in operons and genes integrated to plastome do not exhibit silencing mechanism. An additional advantage lies in the maternal inheritance of plastids in most plant species, which addresses the biosafety concerns related to transgenic plants. The plastid engineering usually results in alteration of several thousand plastid genome copies in a cell. In this chapter, the evolution of this technology with respect to the current state-of-the-art methods and the advantage of this technology over nuclear transformation are discussed. The recent advancement in plastome engineering and novel tools/methods developed to overcome potential limitations of chloroplast transformation are discussed in this chapter. Finally, future application of chloroplast engineering with a perspective for sugarcane plastome engineering is also briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal P, Verma D, Daniell H (2011) Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS One 6:e29302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad N, Mukhtar Z (2013) Green factories: plastids for the production of foreign proteins at high levels. Gene Ther Mol Biol 15:14–29

    Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon-alpha2b. Plant Biotechnol J 5:511–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlen PA, Singleton M, Adamovicz JJ, Ding Y, Davoodi-Semiromi A, Daniell H (2008) Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun 76:3640–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki KI (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11(2):93–99

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28:246–252

    Article  CAS  PubMed  Google Scholar 

  • Bock R, Kossel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    Article  CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911

    Article  CAS  PubMed  Google Scholar 

  • Caroca R, Howell KA, Hasse C, Ruf S, Bock R (2012) Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J 73:368–379

    Article  PubMed  Google Scholar 

  • Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L biomass. Biotechnol Biofuels 9:154. doi:10.1186/s13068-016-0569-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A 89:8068–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Song F, Tan Y, Zhou X, Zhao W, Ma F, Liu Y, Hussain J, Wang Y, Yang G, He G (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L). Acta Biochim Biophys Sin 43:284–291

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W (2009a) Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009b) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134. doi:10.1186/s13059-016-1004-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    Article  CAS  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  • De Marchis F, Pompa A, Mannucci R, Morosinotto T, Bellucci M (2011) A plant secretory signal peptide targets plastome-encoded recombinant proteins to the thylakoid membrane. Plant Mol Biol 76:427–441

    Article  CAS  PubMed  Google Scholar 

  • De Marchis F, Pompa A, Bellucci M (2012) Plastid proteostasis and heterologous protein accumulation in transplastomic plants. Plant Physiol 160:571–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Elghabi Z, Karcher D, Zhou F, Ruf S, Bock R (2011) Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome. Plant Biotechnol J 9:599–608

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Robledo JA, Vasta GR (2010) Production of recombinant proteins from protozoan parasites. Trends Parasitol 26:244–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441

    Article  PubMed  Google Scholar 

  • Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. Elife 5:e13664

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottschamel J, Waheed MT, Clarke JL, Lössl AG (2013) A novel chloroplast transformation vector compatible with the Gateway(®) recombination cloning technology. Transgenic Res 22:1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R (2011) A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 29:4521–4533

    Article  CAS  PubMed  Google Scholar 

  • Gray BN, Yang H, Ahner BA, Hanson MR (2011) An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol Biol 76:345–355

    Article  CAS  PubMed  Google Scholar 

  • Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7:e37179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Ramalingam S, Nagegowda D, Taylor PW, Chye ML (2008) Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates gram-negative bacteria. J Exp Bot 59:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Kluwer Academic Publishers, Dordrecht, pp 93–113

    Chapter  Google Scholar 

  • Hennig A, Bonfig K, Roitsch T, Warzecha H (2007) Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS J 274:5749–5758

    Article  CAS  PubMed  Google Scholar 

  • Inka Borchers AM, Gonzalez-Rabade N, Gray JC (2012) Increased accumulation and stability of rotavirus VP6 protein in tobacco chloroplasts following changes to the 5′ untranslated region and the 5′ end of the coding region. Plant Biotechnol J 10:422–434

    Article  PubMed  Google Scholar 

  • Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327

    Article  CAS  PubMed  Google Scholar 

  • Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanagaraj AP, Verma D, Daniell H (2011) Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol Biol 76:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    Article  CAS  PubMed  Google Scholar 

  • Kuchuk N, Sytnyk K, Vasylenko M, Shakhovsky A, Komarnytsky I, Kushnir S, Gleba Y (2006) Genetic transformation of plastids of different Solanaceae species using tobacco cells as organelle hosts. Theor Appl Genet 113:519–527

    Article  PubMed  Google Scholar 

  • Kumar S, Daniell H (2004) Engineering the chloropalst genome for hyperexpression of human therapeutic proteins and vaccines antigens. Methods Mol Biol 267:365–383

    CAS  PubMed  Google Scholar 

  • Lau OS, Sun SS (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, XM X, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S, Ashida H, Watanabe R, Inai K, Kim YS, Mukougawa K, Fukuda H, Tomizawa K, Ushiyama K, Asao H, Tamoi M, Masutani H, Shigeoka S, Yodoi J, Yokota A (2011) Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76:335–344

    Article  CAS  PubMed  Google Scholar 

  • Lössl A, Bohmert K, Harloff H, Eibl C, Muhlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    Article  PubMed  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:E623–E632

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldaner FR, Aragão FJ, dos Santos FB, Franco OL, da Rocha Queiroz Lima M, de Oliveira RR, Vasques RM, Nagata T (2013) Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 97:5721–5729

    Article  CAS  PubMed  Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  CAS  PubMed  Google Scholar 

  • Morgenfeld M, Segretin ME, Wirth S, Lentz E, Zelada A, Mentarry A (2009) Potato virus X coat protein fusion to human papillomavirus 16 E7 oncoprotein enhance antigen stability and accumulation in tobacco chloroplast. Mol Biotechnol 43:243–249

    Article  CAS  PubMed  Google Scholar 

  • Muhlbauer SK, Koop HU (2005) External control of transgene expression in tobacco plastids using the bacterial lacI repressor. Plant J 43:941–946

    Article  PubMed  Google Scholar 

  • Mustafa G (2011) Development of plastid transformation in sugarcane, PhD Dissertation, Quaid-I-Azam University, Islamabad, Pakistan

    Google Scholar 

  • Nadai M, Bally J, Vitel M, Job C, Tissot G, Botterman J, Dubald M (2009) High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. Transgenic Res 18:173–183

    Article  CAS  PubMed  Google Scholar 

  • O’Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40:2782–2792

    Article  PubMed  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  CAS  PubMed  Google Scholar 

  • Ortigosa SM, Fernández-San Millán A, Veramendi J (2010) Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Transgenic Res 19:703–709

    Article  CAS  PubMed  Google Scholar 

  • Ovcharenko O, Momot V, Cherep N, Sheludko Y, Komarnitsky I, Rudas V, Kuchuk N (2011) Transfer of transformed Lesquerella fendleri (Gray) Wats chloroplasts into Orychophragmus violaceus (L) OE Schulz by protoplast fusion. Plant Cell Tissue Org Cult 105:21–27

    Article  Google Scholar 

  • Pasoreck EK, Su J, Silverman IM, Gosai SJ, Gregory BD, Yuan JS, Daniell H (2016) Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signaling. Plant Biotechnol J 14:1862–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    Article  CAS  PubMed  Google Scholar 

  • Rader RA (2008) Expression system for process and product improvement. BioProcess Int 6:4–9

    Google Scholar 

  • Rigano MM, Manna C, Giulini A, Pedrazzini E, Capobianchi M, Castilletti C, Di Caro A, Ippolito G, Beggio P, De Giuli Morghen C, Monti L, Vitale A, Cardi T (2009) Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cells dagger. Plant Biotechnol J 7:577–591

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Alpuche-Solís AG, Soria-Guerra RE, Moreno-Fierros L, Martínez-González L, Herrera-Díaz A, Korban SS (2009) Expression of an Escherichia coli antigenic fusion protein comprising the heat labile toxin B subunit and the heat stable toxin, and its assembly as a functional oligomer in transplastomic tobacco plants. Plant J 57:45–54

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104:6998–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharff LB, Bock R (2014) Synthetic biology in plastids. Plant J 78:783–798

    Google Scholar 

  • Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Scotti N, Rigano MM, Cardi T (2012) Production of foreign proteins using plastid transformation. Biotechnol Adv 30:387–397

    Article  CAS  PubMed  Google Scholar 

  • Sigeno A, Hayashi S, Terachi T, Yamagishi H (2009) Introduction of transformed chloroplasts from tobacco into petunia by asymmetric cell fusion. Plant Cell Rep 28:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Kumar P, Tiwari NN, Rastogi J, Singh SP (2013) Current status of sugarcane transgenic: an overview. Adv Genet Eng 2:112

    Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissot G, Canard H, Nadai M, Martone A, Botterman J, Dubald M (2008) Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. Plant Biotechnol J 6:309–320

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta S-i, Ebina M, Kobayashi M, Takahashi W (2017) Complete chloroplast genomes of Erianthus arundinaceus and Miscanthus sinensis: comparative genomics and evolution of the Saccharum Complex. PLoS One 12(1):e0169992

    Article  PubMed  PubMed Central  Google Scholar 

  • Tungsuchat-Huang T, Maliga P (2012) Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. Plant J 70:717–725

    Article  CAS  PubMed  Google Scholar 

  • Vafaee Y, Staniek A, Mancheno-Solano M, Warzecha H (2014) A modular cloning toolbox for the generation of chloroplast transformation vectors. PLoS One 9:e110222

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkov VT, Scotti N, Kahlau S, Maclean D, Grillo S, Gray JC, Bock R, Cardi T (2009) Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol 150:2030–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    Article  CAS  PubMed  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 107:6204–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739–758

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, Daniell H (2010a) Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci U S A 107:7101–7106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010b) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Jin S, Kanagaraj A, Singh ND, Daniel J, Kolattukudy PE, Miller M, Daniell H (2013) Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates. PLoS One 8:e57187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waheed MT, Ismail H, Gottschamel J, Mirza B, Lössl AG (2015) Plastids: the green frontiers for vaccine production. Front Plant Sci 6:1005. doi:10.3389/fpls201501005

    Article  PubMed  PubMed Central  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Weng Y, Dickey A, Wang KY (2015) Plants as factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16:28549–22865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R (2012) Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J 72:115–128

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  CAS  PubMed  Google Scholar 

  • Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Sathishkumar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, S.R., Anunanthini, P., Sathishkumar, R. (2017). Plastome Engineering: Yesterday, Today, and Tomorrow. In: Mohan, C. (eds) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_10

Download citation

Publish with us

Policies and ethics