Skip to main content

Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Abstract

Great use of nanotechnology for potential benefits and novel applications has been developed in biotechnology and agriculture. Fertilizers have a critical role in plant growth and metabolism, but at most concentrations, applied fertilizers are unavailable to the plants because of leaching, runoff, and degradation. Nanoparticles (NPs) encapsulate nutrients, as chemical fertilizers that are released on demand for plant growth and development. Several studies have revealed that specific (low-dose) concentrations of NPs, foliar spray/irrigation, and carbon nanotubes significantly enhanced plant growth (plant height, root length, number of leaves, fruit size and production, seed germination, fresh shoot and root biomass), physiology (chlorophyll a, b, carotenoid content, photosynthesis, carbohydrates, formation of photosynthetic pigments), oxidants, antioxidants, and developed plant tolerance against biotic and abiotic stress. There is further need to explore NP effects on the photosynthetic mechanism, their activity beneath plant roots, and an urgent need to develop target-specific, controlled release of NPs as fertilizers to decrease the loss and spread of NPs into other environmental expanses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linumusitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39:139–146. https://doi.org/10.1007/s40415-015-0227-x

    Article  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of Fe2O3 NPs on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  • Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22(29):295101

    Article  PubMed  CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide NPs. Environ Toxicol Chem 35:2223–2229. https://doi.org/10.1002/etc.3374

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (ViciafabaL.). Sci Total Environ 472:834–841

    Article  CAS  PubMed  Google Scholar 

  • Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 297–310

    Chapter  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle inducedenhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Asadishad B, Chaha S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold NPs on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano 4:907–918

    Article  CAS  Google Scholar 

  • Bai Y, Park IS, Lee SJ, Bae TS, Watari F, Uo M, Lee MH (2011) Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon 49:3663–3671. https://doi.org/10.1128/JCM.01091-11

    Article  CAS  Google Scholar 

  • Barbinta-Patrascu ME, Badea N, Ungureanu C, Pirvu C, Iftimie V, Antohe S (2017) Photophysical studies on biocomposites based on carbon nanotubes and chlorophyll-loaded biomimetic membranes. Romanian Rep Phys 69:604

    Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nano 4:203–221

    Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi MR, Gunner M, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayr RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  PubMed  Google Scholar 

  • Burke David J, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650. https://doi.org/10.3390/ijms161023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmana U, Sainib M, Kumar P (2013) Effect of zinc oxide NPs on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612. https://doi.org/10.1080/02772248.2013.803796

    Article  CAS  Google Scholar 

  • Calkins JO, Umasankar Y, O’Neill H, Ramasamy RP (2013) High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy Environ Sci 6:1891–1900

    Article  CAS  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931. https://doi.org/10.1897/08-117.1

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T (2017) Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci 8: 1222.

    Google Scholar 

  • Cardoso EJ, Vasconcellos RL, Marina YH, Santos CA, Alves PR et al (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289. Link: https://goo.gl/IgzmGx

    Article  Google Scholar 

  • Chegini E, Ghorbanpour M, Hatami M, Taghizadeh M (2017) Effect of multi-walled carbon nanotubes on physiological traits, phenolic contents and antioxidant capacity of Salvia mirzayanii Rech f & Esfand under drought stress. J Med Plants 139(2):191–207

    Google Scholar 

  • Chung H, Kim MJ, Ko K, Kim JH, Kwon H-A, Hong I et al (2015) Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ 514:307–313

    Article  CAS  PubMed  Google Scholar 

  • Ciornii D, Feifel SC, Hejazi M, Kolsch A, Lokstein H, Zouni A, Phys FL, Solidi SA (2017) Construction of photobiocathodes using multi-walled carbon nanotubes and photosystem I. Phys Status Solidi 214:1700017. https://doi.org/10.1002/pssa.201700017

    Article  CAS  Google Scholar 

  • Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 NPs to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro LF, Marques BF, Kist LW, Bogo MR, Lopez G, Pagano G et al (2014) Toxicity of fullerene and nanosilver nanomaterials against bacteria associated to the body surface of the estuarine worm Laeonereisacuta (Polychaeta. Nereididae). Mar Environ Res 99:52–59. https://doi.org/10.1016/j.marenvres.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide NPs on growth, morphology, photosynthesis, and antioxidant response in Oryzasativa. Photosynthetica 54:110–119. https://doi.org/10.1007/s11099-015-0167-5

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016) Thermal co-reduction approach to vary size of silver nanoparticle: itsmicrobial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163. https://doi.org/10.1007/s11356-015-4570-z

    Article  PubMed  CAS  Google Scholar 

  • de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO NPs in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Article  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA et al (2013) Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547. https://doi.org/10.1021/es4034809

    Article  CAS  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  PubMed  Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase NPs (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155:283–286. https://doi.org/10.1007/s12011-013-9788-3

    Article  CAS  PubMed  Google Scholar 

  • Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. https://doi.org/10.1038/nnano.2010.2

    Article  CAS  PubMed  Google Scholar 

  • Di Giacomo R et al (2013) Candida albicans /MWCNTs: a stable conductive bio nanocomposite and its temperature sensing properties. IEEE Trans Nano Technol 12:111–114

    Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered NPs in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27. https://doi.org/10.1016/j.geoderma.2011.12.018

    Article  CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106. https://doi.org/10.1007/s12011-011-9222-7

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511. https://doi.org/10.1016/j.chemosphere.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:84441. https://doi.org/10.1371/journal.pone.0084441

    Article  CAS  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel PJ, Holdena AP (2012) Identification of soil bacteria susceptible to TiO2 and ZnO NPs. Appl Environ Microbiol 78:6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo PJ, Landry PM, Faltermeier MS, McNicholas PT, Iverson MN, Boghossian AA, Reuel FN, Hilmer JA, Sen F, Brew AJ, Michael S, Strano SM (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green MJ et al (2016) Vertical transport and plant uptake of NPs in a soil mesocosm experiment. J Nanobiotechnol 14:40. https://doi.org/10.1186/s12951-016-0191-z

    Article  CAS  Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold NPs from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11

    Google Scholar 

  • Haghighi M, Teixeira da Silva JA (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol 17:221–227. https://doi.org/10.1007/s12892-014-0056-7

    Article  Google Scholar 

  • Ham M-H, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photo-electrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of singlewalled carbon nanotubes in Hyoscyamusniger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:Part B. https://doi.org/10.1016/j.jhazmat.2016.10.064

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of NPs on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Hojjat SS, Hojjat H (2016) Effects of silver nanoparticle exposure on germination of Lentil (Lens culinarisMedik.). IJFAS 5:248–252

    Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653. https://doi.org/10.3390/ijms161125980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China: a review. Agron Sustain Dev 35:369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and NPs titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot Cluj Napoca 41:201–207

    Article  CAS  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154. https://doi.org/10.1186/1752-153X-7-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Cidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58:297–317. https://doi.org/10.1080/10408398.2016.1160363

    Article  CAS  Google Scholar 

  • Jiang HS, Yin LY, Ren NN, Zhao ST, Li Z, Zhi Y et al (2017) Silver NPs induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11:157–167. https://doi.org/10.1080/17435390.2017.1278802

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Son Y, DeForest JL, Kang YJ, Kim W, Chung H (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 466:533–538

    Article  PubMed  CAS  Google Scholar 

  • Juhel G, Batisse E, Hugues Q, Daly D, Frank NA, van Pelt M, Halloran J, Marcel A, Jansen K (2011) Alumina NPs enhance growth of Lemnamino. Aquat Toxicol 105:328–336

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J et al (2015) Effects of functionalized and raw multiwalled carbon nanotubes on soil bacterial community composition. PLoS One 10:0123042. https://doi.org/10.1371/journal.pone.0123042

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. https://doi.org/10.1021/nn900887m

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135. https://doi.org/10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small Nano Micro 9:115–123. https://doi.org/10.1002/smll.201201225

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protect 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kiapour H, Moaveni P, Habibi D, Sani B (2015) Evaluation of the application of gibbrellic acid and titanium dioxide NPs under drought stress on some traits of basil (OcimumbasilicumL.). Int J Agron Agric Res 6:138–150

    Google Scholar 

  • Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide NPs in final sewage sludge products. Environ Sci Technol 44:7509–7514. Link: https://goo.gl/OS5yfM

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  CAS  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nano encapsulation for drug delivery. EXCLI J 13:265–286

    PubMed  PubMed Central  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973. https://doi.org/10.1021/am402052x

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Barbara Fayard B (2012) Accumulation, translocation and impact of TiO2 NPs in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingy S, Xiao W, Chao L, Chunxiang Q, Liang C et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem Res 121:69–79. https://doi.org/10.1007/s12011-007-8028-0

    Article  CAS  Google Scholar 

  • Leslie DC et al (2014) A bioinspired omni-phobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 32:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Li J, Naeem MS, Wang X, Liu L, Chen C, Ma N et al (2015) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS One 10:0143885. https://doi.org/10.1371/journal.pone.0143885

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C et al (2016) Brassino-steroid ameliorates zinc oxide NPs-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615. https://doi.org/10.3389/fpls.2016.00615

    Article  PubMed  PubMed Central  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Micetic I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi GA (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Safe 123:81–88

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of NPs: inhibition of seed germination and root growth. Environ Pollut 150:243–250. https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  • Luongo LA, Zhang XJ (2010) Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178:356–362

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu C, Qu C, Yin S, Liu J, Gao F, Hong F (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Article  CAS  Google Scholar 

  • Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold NPs. RSC Adv 5:26727–26733. https://doi.org/10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7. https://doi.org/10.1155/2011/696535

    Article  CAS  Google Scholar 

  • Mahmoodzadeh H, Aghili R (2014) Effect on germination and early growth characteristics in wheat plants (Triticum aestivumL.) seeds exposed to TiO2 NPs. J Chem Health Risks 4:467–472

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hort Plants 3:25–32

    Google Scholar 

  • Martinez-Ballesta MC, Zapata L, Chalbi N, Carvaja M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14:42. https://doi.org/10.1186/s12951-016-0199-4

    Article  CAS  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Rl Soc Interface 9(77):3514–3527

    Article  CAS  Google Scholar 

  • Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L). In: 2nd international conference on agricultural and animal science, vol 22. IACSIT Press, Singapore, pp 160–163

    Google Scholar 

  • Mohamed AKSH, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver NPs on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63:1736. https://doi.org/10.1080/03650340.2017.1300256

    Article  CAS  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 NPs on chickpea response to cold stress. Biol Trace Elem Res 152:152403–152410. https://doi.org/10.1007/s12011-013-9631-x

    Article  CAS  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 NPs on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian J Plant Physiol 61:768–775. https://doi.org/10.1134/S1021443714050124

    Article  CAS  Google Scholar 

  • Moll J, Gogos A, Bucheli DT, Widmer F, van der Heijden AGM (2016) Effect of NPs on red clover and its symbiotic microorganisms. J Nanobiotechnol 14:36. https://doi.org/10.1186/s12951-016-0188-7

    Article  CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528. https://doi.org/10.1007/s11051-011-0406-z

    Article  CAS  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2:247. https://doi.org/10.1186/2193-1801-2-247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172. https://doi.org/10.3389/fpls.2016.00172

  • Nair R (2016) Effects of NPs on plant growth and development. Plant Nanotechnol:95–118. Link: https://goo.gl/6ZOTj5

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nath D (2015) Safer nano formulation for the next decade. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer, Cham, pp 327–352. https://doi.org/10.1007/978-3-319-15461-9_12

    Chapter  Google Scholar 

  • Pallavi MCM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver NPs on plant growth and soil bacterial diversity. Biotech 6:254. https://doi.org/10.1007/s13205-016-0567-7

    Article  CAS  Google Scholar 

  • Perez-de-Luque A, Hermosin C (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Blackwell Publishing Ltd, Oxford, pp 383–398

    Chapter  Google Scholar 

  • Petersen EJ, Henry TB, Zhao J, Maccuspie RI, Kirschling TL, Dobrovolskaia MA et al (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246. https://doi.org/10.1021/es4052999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak K, Gutarowska B (2015) Influence of the silver nanoparticles on microbial community indifferent environments. Acta Biochimica Polonica 62:72–724. https://doi.org/10.18388/abp.2015_1118

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Element Res 156:323–328. https://doi.org/10.1007/s12011-013-9833-2

    Article  CAS  Google Scholar 

  • Rad JS, Karimi J, Mohsenzadeh S, Rad MS, Moradgholi J (2014) Evaluating SiO2 NPs effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull Env Pharmacol Life Sci 3:194–201

    Google Scholar 

  • Rafique R, Arshad M, Khokhar M, Qazi I, Hamza A, Virk N (2015) Growth response of wheat to titania NPs application. NUST J Eng Sci 7:42–46

    Google Scholar 

  • Rahmani F, Peymani A, Daneshvand E, Biparva P (2016) Impact of zinc oxide and copper oxide NPs on physiological and molecular processes in Brassica napus L. Indian J Plant Physiol 21:122–128. https://goo.gl/anwCLO

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015a) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015b) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide NPs on the tomato (Solanum lycopersicumL.) plant. Metallomics 7:1584–1594. https://doi.org/10.1039/C5MT00168D

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar CJ, Pratim Biswas P (2016) Enhancing the mobilization of native phosphorous in mung bean rhizosphere using ZnO NPs synthesized by soil fungi. J Agric Food Chem 64:3111–3118. https://doi.org/10.1021/acs.jafc.5b05224

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Nandita D, Arkadyuti RC, Melvin SS, Chidambaram R, Rishi S, Ashutosh K (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Rao DP, Srivastava A (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut, and garlic using multiwalled carbon nanotubes. Euro Chemical Bull 3:502–504

    Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90

    Google Scholar 

  • Ratnikova TA, Podila R, Rao AM, Taylor AG (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J 2015:419215. https://doi.org/10.1155/2015/419215

    Article  CAS  Google Scholar 

  • Resham S, Khalid M, Gul Kazi A (2015) Nano biotechnology in agricultural development. In: Barh D et al (eds) Plant Omics: the omics of plant science. Springer, New Delhi, pp 683–698. https://doi.org/10.1007/978-81-322-2172-2_24

    Chapter  Google Scholar 

  • Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods, Iran. Biol Forum 7:957–964

    CAS  Google Scholar 

  • Rottman J, Shadman F, Sierra-Alvarez R (2012) Interactions of inorganic oxide NPs with sewage biosolids. Water Sci Technol 66:1821–1827. Link: https://goo.gl/RzB8U2

    Article  CAS  PubMed  Google Scholar 

  • Santos SMA, Dinis AM, Rodrigues DMF, Peixoto F, Videira RA, Jurado AS (2013) Studies on the toxicity of an aqueous suspension of C60 NPs using a bacterium (gen. Bacillus) and an aquatic plant (Lemnagibba) as in vitro model systems. Aqua Toxicol 142–143:347–354. https://doi.org/10.1016/j.aquatox.2013.09.001

    Article  CAS  Google Scholar 

  • Sawant D (2016) Effect of carbon nanotubes on seed germination, growth and yield of hybrid Bt cotton Var. 7383 BG II.

    Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330. https://doi.org/10.1016/j.envpol.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  • Sekar N, Umasankar Y, Ramasamy R (2014) Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys Chem Chem Phys 16:7862–7871

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M et al (2011) Trafficking and subcellular localization of multi walled carbon nanotubes in plant cells. ACS Nano 5:493–499. https://doi.org/10.1021/nn102344t

    Article  CAS  PubMed  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact 1:9–12. Link: https://goo.gl/oBZC8s

    Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, PeraltaVidea JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 NPs in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643. https://doi.org/10.1021/es300955b

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148. https://doi.org/10.1007/s11270-008-9797-6

    Article  CAS  Google Scholar 

  • Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal NPs in biosolids. J Haz Mater 274:399–403. Link: https://goo.gl/ewuXud

    Article  CAS  Google Scholar 

  • Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer, Cham, pp 409–434. https://doi.org/10.1007/978-3-319-15461-9_15

    Chapter  Google Scholar 

  • Sharifi-Rad J, Sharifi-Rad M, Teixeira da Silva JA (2016) Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexusL., TaraxacumofficinaleF. H. Wigg) exposed to SiO2 NPs. J Agr Sci Tech 18:1027–1040

    Google Scholar 

  • Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide NPs on soil microorganisms. Front Environ Sci Eng 9:912–918. https://doi.org/10.1007/s11783-015-0789-7

    Article  CAS  Google Scholar 

  • Shen Z, Röding M, Kröger M, Li Y (2017) Carbon nanotube length governs the viscoelasticity and permeability of bucky paper. Polymers 9:115. https://doi.org/10.3390/polym9040115

    Article  CAS  PubMed Central  Google Scholar 

  • Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340

    Chapter  Google Scholar 

  • Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 1–31

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentumseeds Mill.). Saudi Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica junceaL. genotypes under NaCl stress. Protoplasma 249:139–153

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences NPs and their impact on plants. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0

    Book  Google Scholar 

  • Simonet BM, Valcarcel M (2009) Monitoring NPs in the environment. Anal Bioanal Chem 393:17–21. https://doi.org/10.1007/s00216-008-2484-z

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 NPs on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535. https://doi.org/10.1016/j.jhazmat.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged luffa seedlings. Protoplasma 252:1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201

    Article  CAS  Google Scholar 

  • Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S (2019) Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech 9(3):68

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. https://doi.org/10.1021/es901695c

    Article  CAS  PubMed  Google Scholar 

  • Szymanska R, Kolodziej K, Slesak I, Zimak-Piekarczyk P, Orzechowska A, Gabruk M et al (2016) Titanium dioxide NPs (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environ Pollut 213:957–965. https://doi.org/10.1016/j.envpol.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper NPs on drought resistance of wheat seedlings. Nanoscale Resea Lett 12:60

    Article  CAS  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO NPs towards the aquatic plant Spirodelapunctat aand the role of testing media parameters. Environ Sci Process Impacts 15:1830–1843. https://doi.org/10.1039/c3em00235g

    Article  CAS  PubMed  Google Scholar 

  • Tiwari DK, Dasgupta–Schubert N, Villaseñor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87–96

    Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica NPs deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181. https://doi.org/10.1039/c0nr00722f

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) (2017) Nanomaterials in plants, algae, and microorganisms: concepts and controversies, vol 1. Academic Press, London

    Google Scholar 

  • Upadhyaya H, Begum L, Dey B, Nath PK, Panda SK (2017) Impact of calcium phosphateNPs on rice plant. J Plant Sci Phytopathol 1:001–0010

    Article  Google Scholar 

  • Vacheron J et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2016) Enhanced plant growth promoting role of phycomolecules coated zinc oxide NPs with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem PII S0981-9428(16):30354–0. https://doi.org/10.1016/j.plaphy.2016.09.004

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, Sahi S (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 473–500

    Chapter  Google Scholar 

  • Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Sik Ok Y (2017) Contrasting effects of engineered carbon nanotubeson plants: a review. Environ Geochem Health 39:1421. https://doi.org/10.1007/s10653-017-9957-y

    Article  CAS  PubMed  Google Scholar 

  • VittoriAntisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered NPs on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94. https://doi.org/10.1016/j.soilbio.2013.01.016

    Article  CAS  Google Scholar 

  • Voleti, R (2015) Effects of low concentrations of carbon nanotubes on growth and gas exchange in Arabidopsis Thaliana. MSU Graduate Theses 2933. http://bearworks.missouristate.edu/theses/2933

  • Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photo-electrochemical cells based on photosynthetic systems: a review. Biofuel Resea J 6:227–235

    Article  Google Scholar 

  • Wang Q, Ma X, Zhang W, Peia H, Chen Y (2012a) The impact of cerium oxide NPs on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012b) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841. https://doi.org/10.1007/s11051-012-0841-5

    Article  CAS  Google Scholar 

  • Wang D, Wang G, Zhang G, Xu X, Yang F (2013) Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour Technol 131:527–530

    Article  CAS  PubMed  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294. https://doi.org/10.1021/es900065h

    Article  CAS  PubMed  Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP et al (2016) Lipid exchange envelope penetration (LEEP) of NPs for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172. https://doi.org/10.1021/acs.nanolett.5b04467

    Article  CAS  PubMed  Google Scholar 

  • Wu M-Y (2013) Effects of incorporation of nano-carbon into slow released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. In Intelligent System Design and Engineering Applications (ISDEA). Third International Conference IEEE, pp. 676–681. https://doi.org/10.1109/ISDEA.2012.161

  • Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2 NPs with the marine microalga Nitzschiaclosterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–533. https://doi.org/10.1016/j.scitotenv.2014.11.066

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Natural Science Edition) 2:59–63

    Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 NPs on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141. https://doi.org/10.1007/s12011-010-8901-0

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Hunting RE, Wouters M, Willie Peijnenburg WJGM, Vijver GM (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.01123

    Article  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR et al (2012) Stress response and tolerance of Zea mays to CeO2 NPs: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622. https://doi.org/10.1021/nn302975u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Bio Trace Element Res 104:83–91. https://doi.org/10.1385/BTER:104:1:083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nafees, M. et al. (2020). Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_5

Download citation

Publish with us

Policies and ethics