Skip to main content
Log in

Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 μg/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 μg/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antipova OV, Bartova LM, Kalashnikova TS, Obroucheva NV, Voblikova VD, Muromtsev GS (2003) Fusicoccin-induced cell elongation and endogenous fusicoccin-like ligands in germinating seeds. Plant Physiol Biochem 41(2):157–164

    Article  CAS  Google Scholar 

  • Baby TT, Ramaprabhu S (2011) Non-enzymatic amperometric glucose biosensor from zinc oxide nanoparticles decorated multi-walled carbon nanotubes. J Nanosci Nanotechnol 11(6):4684–4691

    Article  CAS  Google Scholar 

  • Britto PJ, Santhanam KSV, Julio AR, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11(2):154–157

    Article  CAS  Google Scholar 

  • Canas JE, Long MQ, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2010) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res. doi:10.1007/s11051-010-0135-8

    Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839

    Article  CAS  Google Scholar 

  • Filippo P, Michael T, Mireille DM, Claude P, Christoph D (2006) Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223(5):965–974

    Article  Google Scholar 

  • Guiseppi-Elie A, Lei CH, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5):559–564

    Article  CAS  Google Scholar 

  • Jiang YJ, Jin C, Yang F, Yu XJ, Wang GJ, Cheng S, Di Y, Li J, Fu DL, Ni QX (2011) A new approach to produce amino-carbon nanotubes as plasmid transfection vector by [2 + 1] cycloaddition of nitrenes. J Nanopart Res 13(1):33–38

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, De Silva SK, Nedosekin DA, Dervishic E, Birisa AS, Shashkovb EV, Galanzhab EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302

    Article  CAS  Google Scholar 

  • Kurval SS, Kathi J, Rhee KY, Park SJ (2011) A complete green protocol: wrapping of multiwall carbon nanotubes with silver nanoparticles. J Nanosci Nanotechnol 11(5):4463–4465

    Article  Google Scholar 

  • Lagrimini LM, Joly RJ, Dunlap JR, Liu TY (1997) The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant Mol Biol 33(5):887–895

    Article  CAS  Google Scholar 

  • Lee BW, Park CH, Song JH, Yj Kim (2011) Controlling the shapes and electrical conductivities of polyaniline-wrapped MWCNTs. J Nanosci Nanotechnol 11(7):6089–6094

    Article  CAS  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological experiment. Higher Education Press, Beijing, pp 119–120 (in Chinese)

    Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  Google Scholar 

  • Lin C, Fugetsu B, Watari F, Su YB (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170(2–3):578–583

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  • Liu RX, Zhou ZG, Guo WQ, Chen BL, Oosterhuis DM (2008) Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agric Water Manag 95(11):1261–1270

    Article  Google Scholar 

  • Liu B, Li XY, Li BL, Xu BQ, Zhao YL (2009a) Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation. Nano Lett 9(4):1386–1394

    Article  CAS  Google Scholar 

  • Liu QL, Chen B, Wang QL, Fang XH, Lin JX (2009b) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  Google Scholar 

  • Liu QL, Zhao YY, Wan YL, Zheng JP, Zhang XJ, Wang CR, Fang XH, Lin JX (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4(10):5743–5748

    Google Scholar 

  • Lopez-Moreno ML, De la Rose G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  CAS  Google Scholar 

  • Merli D, Ugonino M, Profumo A, Fagnoni M, Quartarone E, Mustarelli P, Visai L, Grandi MS, Galinetto P, Canton P (2011) Increasing the antibacterial effect of lysozyme by immobilization on multi-walled carbon nanotubes. J Nanosci Nanotechnol 11(4):3100–3106

    Article  CAS  Google Scholar 

  • Musameh M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Pillai SK, Ramontja J, Ray SS (2010) Controlled two-step amine functionalization of multi-walled carbon nanotubes for the preparation of polylactide/carbon nanotubes composites. Adv Sci Lett 3(2):117–122

    Article  CAS  Google Scholar 

  • Qiu J, Wang GJ, Zhao CX (2008) Preparation and characterization of amphiphilic multi-walled carbon nanotubes. J Nanopart Res 10(4):659–663

    Article  CAS  Google Scholar 

  • Rafeeqi T, Kaul G (2011) Elucidation of interaction between multi-walled carbon nanotubes and cell culture medium by spectroscopy supports biocompatibility of these nanotubes. Adv Sci Lett 4(2):536–540

    Article  CAS  Google Scholar 

  • Saleh NB, Pfefferle LD, Elimelech M (2008) Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42(21):7963–7969

    Article  CAS  Google Scholar 

  • Shweta T, Sumit KS, Sabyasachi S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181. doi:10.1039/c0nr00722f

    Article  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47(15):3479–3487

    Article  CAS  Google Scholar 

  • Taniguchi T, Kataoka R, Futai K (2008) Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biol Biochem 40(5):1235–1243

    Article  CAS  Google Scholar 

  • Wang XD, Sun C, Gao SX, Wang LS, Han SK (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity to with Cucumis sativus. Chemosphere 44(8):1711–1721

    Article  CAS  Google Scholar 

  • Wepasnick KA, Smith BA, Bitter JL (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014

    Article  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in Plants. Environ Sci Technol 43(14):5290–5294

    Article  CAS  Google Scholar 

  • Ye SF, Wang YW, Jiao F, Zhang HG, Lin CL, Wu YH, Zhang QQ (2011) The role of NADPH oxidase in multi-walled carbon nanotubes-induced oxidative stress and cytotoxicity in human macrophages. J Nanosci Nanotechnol 11(5):3773–3781

    Article  CAS  Google Scholar 

  • Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5(5):408–411

    Article  CAS  Google Scholar 

  • Yuan HG, Hu SL, Huang P, Song H, Wang K, Ruan J, He R, Cui DX (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res Lett. doi:10.1007/s11671-010-9799-3

  • Zeng M, Wu YQ, Gao HN, Fan LR, Mangave C, Lourdin D (2010) Influence of dehydration treatment on intermolecular interaction and morphology of pills prepared from proteins and corn starch. Sci Adv Mater 2(4):514–521

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this research by National Natural Science Foundation of China (20975042, 21175051), the Fundamental Research Funds for the Central Universities of China (2010PY009, 2011PY139) and Natural Science Foundation of Hubei Province Innovation Team (2011CDA115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyou Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7689 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Han, H., Liu, X. et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14, 841 (2012). https://doi.org/10.1007/s11051-012-0841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0841-5

Keywords

Navigation