Skip to main content
Log in

Contrasting effects of engineered carbon nanotubes on plants: a review

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2018

This article has been updated

Abstract

Rapid surge of interest for carbon nanotube (CNT) in the last decade has made it an imperative member of nanomaterial family. Because of the distinctive physicochemical properties, CNTs are widely used in a number of scientific applications including plant sciences. This review mainly describes the role of CNT in plant sciences. Contradictory effects of CNT on plants physiology are reported. CNT can act as plant growth inducer causing enhanced plant dry biomass and root/shoot lengths. At the same time, CNT can cause negative effects on plants by forming reactive oxygen species in plant tissues, consequently leading to cell death. Enhanced seed germination with CNT is related to the water uptake process. CNT can be positioned as micro-tubes inside the plant body to enhance the water uptake efficiency. Due to its ability to act as a slow-release fertilizer and plant growth promoter, CNT is transpiring as a novel nano-carbon fertilizer in the field of agricultural sciences. On the other hand, accumulation of CNT in soil can cause deleterious effects on soil microbial diversity, composition and population. It can further modify the balance between plant-toxic metals in soil, thereby enhancing the translocation of heavy metal(loids) into the plant system. The research gaps that need careful attention have been identified in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 04 January 2018

    Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is as follows.

References

  • Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes–the route toward applications. Science, 297(5582), 787–792. doi:10.1126/science.1060928.

    Article  CAS  Google Scholar 

  • Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49(12), 3907–3919.

    Article  CAS  Google Scholar 

  • Begum, P., Ikhtiari, R., & Fugetsu, B. (2014). Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials, 4(2), 203–221.

    Article  CAS  Google Scholar 

  • Bianco, A., Kostarelos, K., Partidos, C. D., & Prato, M. (2005). Biomedical applications of functionalised carbon nanotubes. Chemical Communications, 5, 571–577.

    Article  CAS  Google Scholar 

  • Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39.

    Article  CAS  Google Scholar 

  • Cañas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., et al. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9), 1922–1931. doi:10.1897/08-117.1.

    Article  Google Scholar 

  • Cano, A. M., Kohl, K., Deleon, S., Payton, P., Irin, F., Saed, M., et al. (2016). Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere, 152, 117–122. doi:10.1016/j.chemosphere.2016.02.093.

    Article  CAS  Google Scholar 

  • Chang, F.-Y., Wang, R.-H., Yang, H., Lin, Y.-H., Chen, T.-M., & Huang, S.-J. (2010). Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films. Thin Solid Films, 518(24), 7343–7347. doi:10.1016/j.tsf.2010.04.108.

    Article  CAS  Google Scholar 

  • Chen, G., Qiu, J., Liu, Y., Jiang, R., Cai, S., Liu, Y., et al. (2015). Carbon Nanotubes Act as Contaminant Carriers and Translocate within Plants. Scientific Reports, 5, 15682. doi:10.1038/srep15682.

    Article  CAS  Google Scholar 

  • Cheng, D., Liu, X., Wang, L., Gong, W., Liu, G., Fu, W., et al. (2014). Seasonal variation and sediment–water exchange of antibiotics in a shallower large lake in North China. Science of the Total Environment, 476–477, 266–275. doi:10.1016/j.scitotenv.2014.01.010.

    Article  CAS  Google Scholar 

  • Chu, H., Wei, L., Cui, R., Wang, J., & Li, Y. (2010). Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coordination Chemistry Reviews, 254(9–10), 1117–1134. doi:10.1016/j.ccr.2010.02.009.

    Article  CAS  Google Scholar 

  • Chung, H., Kim, M. J., Ko, K., Kim, J. H., Kwon, H.-A., Hong, I., et al. (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Science of the Total Environment, 514, 307–313.

    Article  CAS  Google Scholar 

  • Chung, H., Son, Y., Yoon, T. K., Kim, S., & Kim, W. (2011). The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicology and Environmental Safety, 74(4), 569–575. doi:10.1016/j.ecoenv.2011.01.004.

    Article  CAS  Google Scholar 

  • Cordeiro, L. F., Marques, B. F., Kist, L. W., Bogo, M. R., López, G., Pagano, G., et al. (2014). Toxicity of fullerene and nanosilver nanomaterials against bacteria associated to the body surface of the estuarine worm Laeonereis acuta (Polychaeta, Nereididae). Marine Environmental Research, 99, 52–59.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A., et al. (2012). Fullerene-Enhanced Accumulation of p, p′-DDE in Agricultural Crop Species. Environmental Science and Technology, 46(17), 9315–9323. doi:10.1021/es301982w.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A., et al. (2013). Multiwalled Carbon Nanotubes and C60 Fullerenes Differentially Impact the Accumulation of Weathered Pesticides in Four Agricultural Plants. Environmental Science and Technology, 47(21), 12539–12547. doi:10.1021/es4034809.

    Article  CAS  Google Scholar 

  • De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535–539. doi:10.1126/science.1222453.

    Article  CAS  Google Scholar 

  • Dinesh, R., Anandaraj, M., Srinivasan, V., & Hamza, S. (2012a). Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma, 173–174, 19–27. doi:10.1016/j.geoderma.2011.12.018.

    Article  CAS  Google Scholar 

  • Dinesh, R., Anandaraj, M., Srinivasan, V., & Hamza, S. (2012b). Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma, 173, 19–27.

    Article  CAS  Google Scholar 

  • Du, J., Wang, S., You, H., & Zhao, X. (2013). Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environmental Toxicology and Pharmacology, 36(2), 451–462. doi:10.1016/j.etap.2013.05.007.

    Article  CAS  Google Scholar 

  • Fan, L., Wang, Y., Shao, Y., Geng, Y., Wang, Z., Ma, Y., et al. (2012). Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline-alkali soil. Food, Agriculture and Environment, 10(1), 552–562.

    Google Scholar 

  • Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez, P. J. (2007). Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology, 41(7), 2636–2642.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic Transfer, Transformation, and Impact of Engineered Nanomaterials in Terrestrial Environments. Environmental Science and Technology, 48(5), 2526–2540. doi:10.1021/es4050665.

    Article  CAS  Google Scholar 

  • Ge, Y., Priester, J. H., Mortimer, M., Chang, C. H., Ji, Z., Schimel, J. P., et al. (2016). Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environmental Science and Technology, 50(7), 3965–3974. doi:10.1021/acs.est.5b05620.

    Article  CAS  Google Scholar 

  • Ghodake, G., Seo, Y. D., Park, D., & Lee, D. S. (2010). Phytotoxicity of Carbon Nanotubes Assessed by Brassica Juncea and Phaseolus Mungo. Journal of Nanoelectronics and Optoelectronics, 5(2), 157–160. doi:10.1166/jno.2010.1084.

    Article  CAS  Google Scholar 

  • Gogos, A., Moll, J., Klingenfuss, F., van der Heijden, M., Irin, F., Green, M. J., et al. (2016). Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology, 14(1), 40. doi:10.1186/s12951-016-0191-z.

    Article  CAS  Google Scholar 

  • Haghighi, M., & da Silva, J. A. T. (2014). The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology, 17(4), 201–208.

    Article  Google Scholar 

  • Hamdi, H., De La Torre-Roche, R., Hawthorne, J., & White, J. C. (2015). Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology, 9(2), 172–180. doi:10.3109/17435390.2014.907456.

    Article  CAS  Google Scholar 

  • Hatami, M., Hadian, J., & Ghorbanpour, M. (2017). Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324, Part B. doi:10.1016/j.jhazmat.2016.10.064.

    Google Scholar 

  • Huang, X., Li, X., Wang, H., Pan, Z., Qu, M., & Yu, Z. (2010). Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochimica Acta, 55(24), 7362–7366. doi:10.1016/j.electacta.2010.07.036.

    Article  CAS  Google Scholar 

  • Jackson, P., Jacobsen, N. R., Baun, A., Birkedal, R., Kühnel, D., Jensen, K. A., et al. (2013). Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal, 7(1), 1–21. doi:10.1186/1752-153x-7-154.

    Article  CAS  Google Scholar 

  • Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., et al. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science and Technology, 39(5), 1378–1383.

    Article  CAS  Google Scholar 

  • Jiang Y., Hua Z., Zhao Y., Liu Q., Wang F., Zhang Q. (2014). The Effect of Carbon Nanotubes on Rice Seed Germination and Root Growth. In: Zhang TC., Ouyang P., Kaplan S., Skarnes B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 250. Springer, Berlin, Heidelberg.

  • Jin, L., Son, Y., DeForest, J. L., Kang, Y. J., Kim, W., & Chung, H. (2014a). Single-walled carbon nanotubes alter soil microbial community composition. Science of the Total Environment, 466–467, 533–538. doi:10.1016/j.scitotenv.2013.07.035.

    Article  CAS  Google Scholar 

  • Jin, L., Son, Y., DeForest, J. L., Kang, Y. J., Kim, W., & Chung, H. (2014b). Single-walled carbon nanotubes alter soil microbial community composition. Science of the Total Environment, 466, 533–538.

    Article  CAS  Google Scholar 

  • Jin, L., Son, Y., Yoon, T. K., Kang, Y. J., Kim, W., & Chung, H. (2013). High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicology and Environmental Safety, 88, 9–15. doi:10.1016/j.ecoenv.2012.10.031.

    Article  CAS  Google Scholar 

  • Johansen, A., Pedersen, A. L., Jensen, K. A., Karlson, U., Hansen, B. M., Scott-Fordsmand, J. J., et al. (2008). Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environmental Toxicology and Chemistry, 27(9), 1895–1903. doi:10.1897/07-375.1.

    Article  CAS  Google Scholar 

  • Kang, S., Mauter, M. S., & Elimelech, M. (2008). Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environmental Science & Technology, 42(19), 7528–7534. doi:10.1021/es8010173.

    Article  CAS  Google Scholar 

  • Kang, S., Mauter, M. S., & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environmental Science & Technology, 43(7), 2648–2653.

    Article  CAS  Google Scholar 

  • Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23(17), 8670–8673.

    Article  CAS  Google Scholar 

  • Katti, D. R., Sharma, A., Pradhan, S. M., & Katti, K. S. (2015). Carbon nanotube proximity influences rice DNA. Chemical Physics, 455, 17–22. doi:10.1016/j.chemphys.2015.03.015.

    Article  CAS  Google Scholar 

  • Kerfahi, D., Tripathi, B. M., Singh, D., Kim, H., Lee, S., Lee, J., et al. (2015). Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS One, 10(3), e0123042. doi:10.1371/journal.pone.0123042.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128–2135.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., et al. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS nano, 3(10), 3221–3227. doi:10.1021/nn900887m.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., et al. (2013a). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M., Kim, B., Kim, J., Alimohammdi, M., Dervishi, E., & Mustafa, T. (2013b). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. doi:10.1002/smll.201201225.

    Google Scholar 

  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    Article  CAS  Google Scholar 

  • Kole, C., Kole, P., Randunu, K. M., Choudhary, P., Podila, R., Ke, P. C., et al. (2013). Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 13(1), 37. doi:10.1186/1472-6750-13-37.

    Article  Google Scholar 

  • Lahiani, M. H., Chen, J., Irin, F., Puretzky, A. A., Green, M. J., & Khodakovskaya, M. V. (2015). Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 81, 607–619.

    Article  CAS  Google Scholar 

  • Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., et al. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & Interfaces, 5(16), 7965–7973. doi:10.1021/am402052x.

    Article  CAS  Google Scholar 

  • Li, S., Han, X., Zhang, A., Wang, F., Wang, D., Zheng, C., et al. (2015). Effect of different urea added nano-carbon synergist on dry matter accumulation and yield of soybean. Journal of Northeast Agricultural University, 4, 002.

    Google Scholar 

  • Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., et al. (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5(10), 1128–1132. doi:10.1002/smll.200801556.

    CAS  Google Scholar 

  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250. doi:10.1016/j.envpol.2007.01.016.

    Article  CAS  Google Scholar 

  • Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., et al. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano letters, 9(3), 1007–1010.

    Article  CAS  Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment, 514, 131–139. doi:10.1016/j.scitotenv.2015.01.104.

    Article  CAS  Google Scholar 

  • Liu, J., Ma, Y., Zhang, Z., Liu, W., & Guo, Z. (2011). Application effect of fertilizer added with nano carbon on rice [J]. Phosphate & Compound Fertilizer, 6, 028.

    Google Scholar 

  • Liu, Q., Zhang, X., Zhao, Y., Lin, J., Shu, C., Wang, C., et al. (2013). Fullerene-induced increase of glycosyl residue on living plant cell wall. Environmental Science & Technology, 47(13), 7490–7498. doi:10.1021/es4010224.

    Article  CAS  Google Scholar 

  • Liu, Q., Zhao, Y., Wan, Y., Zheng, J., Zhang, X., & Wang, C. (2010). Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano. doi:10.1021/nn101430g.

    Google Scholar 

  • Luongo, L. A., & Zhang, X. J. (2010). Toxicity of carbon nanotubes to the activated sludge process. Journal of hazardous materials, 178(1), 356–362.

    Article  CAS  Google Scholar 

  • Martínez-Ballesta, M. C., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology, 14(1), 42. doi:10.1186/s12951-016-0199-4.

    Article  CAS  Google Scholar 

  • Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., & DeRosa, M. C. (2015). Strategic role of nanotechnology in fertilizers: potential and limitations. In M. Rai, C. Ribeiro, L. Mattoso, & N. Duran (Eds.), Emerging nanotechnologies in agriculture (pp. 25–68). New York: Springer.

    Google Scholar 

  • Miralles, P., Church, T. L., & Harris, A. T. (2012a). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science & Technology, 46(17), 9224–9239. doi:10.1021/es202995d.

    Article  CAS  Google Scholar 

  • Miralles, P., Johnson, E., Church, T. L., & Harris, A. T. (2012b). Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. Journal of The Royal Society Interface, 9(77), 3514–3527. doi:10.1098/rsif.2012.0535.

    Article  CAS  Google Scholar 

  • Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y., & Iijima, S. (2008). Toxicity of single-walled carbon nanohorns. ACS nano, 2(2), 213–226.

    Article  CAS  Google Scholar 

  • Miyawaki, J., Yudasaka, M., & Iijima, S. (2004). Solvent effects on hole-edge structure for single-wall carbon nanotubes and single-wall carbon nanohorns. The Journal of Physical Chemistry B, 108(30), 10732–10735.

    Article  CAS  Google Scholar 

  • Mohamed, H. L., Enkeleda, D., Ilia, I., Jihua, C., & Mariya, K. (2016). Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology, 27(26), 265102.

    Article  CAS  Google Scholar 

  • Mohammad, A., Yang, X., Daoyuan, W., Alexandru, S. B., & Mariya, V. K. (2011). Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology, 22(29), 295101.

    Article  CAS  Google Scholar 

  • Moll, J., Gogos, A., Bucheli, T. D., Widmer, F., & van der Heijden, M. G. A. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. Journal of Nanobiotechnology, 14(1), 36. doi:10.1186/s12951-016-0188-7.

    Article  CAS  Google Scholar 

  • Mondal, A., Basu, R., Das, S., & Nandy, P. (2011). Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. Journal of Nanoparticle Research, 13(10), 4519–4528.

    Article  CAS  Google Scholar 

  • Monreal, C. M., DeRosa, M., Mallubhotla, S. C., Bindraban, P. S., & Dimkpa, C. (2016). Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils, 52(3), 423–437. doi:10.1007/s00374-015-1073-5.

    Article  CAS  Google Scholar 

  • Mueller, N. C., & Nowack, B. (2008). Exposure Modeling of Engineered Nanoparticles in the Environment. Environmental Science & Technology, 42(12), 4447–4453. doi:10.1021/es7029637.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016a). Carbon nanomaterials in agriculture: A critical review. [Review]. Frontiers. Plant Science. doi:10.3389/fpls.2016.00172.

    Google Scholar 

  • Mukherjee, A., Majumdar, S., Servin, A. D., Pagano, L., Dhankher, O. P., & White, J. C. (2016b). Carbon Nanomaterials in Agriculture: A Critical Review. Frontiers in Plant Science, 7, 172. doi:10.3389/fpls.2016.00172.

    Article  Google Scholar 

  • Nair, R., Mohamed, M. S., Gao, W., Maekawa, T., Yoshida, Y., Ajayan, P. M., et al. (2012). Effect of carbon nanomaterials on the germination and growth of rice plants. Journal of nanoscience and nanotechnology, 12(3), 2212–2220.

    Article  CAS  Google Scholar 

  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant science, 179(3), 154–163.

    Article  CAS  Google Scholar 

  • Nyberg, L., Turco, R. F., & Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental science & technology, 42(6), 1938–1943.

    Article  CAS  Google Scholar 

  • O’Neill, M. A., & York, W. S. (2003). The composition and structure of plant primary cell walls. The Plant Cell Wall, 1–54.

  • Park, S., & Ahn, Y.-J. (2016). Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). Biocatalysis and Agricultural Biotechnology, 8, 257–262. doi:10.1016/j.bcab.2016.09.012.

    Article  Google Scholar 

  • Pourkhaloee, A., Haghighi, M., Saharkhiz, M. J., Jouzi, H., & Doroodmand, M. M. (2011). Carbon Nanotubes Can Promote Seed Germination via Seed Coat Penetration. Seed Technology, 33(2), 155–169.

  • Qian, Y., Shao, C., Qiu, C., Chen, X., Li, S., Zuo, W., et al. (2010). Primarily Study of the Effects of Nanometer Carbon Fertilizer Synergist on the Late Rice. Acta Agriculturae Boreali-Sinica, S2.

  • Rao, D. P., & Srivastava, A. (2014). Enhancement of seed germination and plant growth of wheat, maize, peanut, and garlic using multiwalled carbon nanotubes. European Chemical Bulletin, 3(5), 502–504.

    Google Scholar 

  • Ratnikova, T. A., Podila, R., Rao, A. M., & Taylor, A. G. (2015). Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth. The Scientific World Journal, 2015, 419215. doi:10.1155/2015/419215.

    Article  Google Scholar 

  • Ren, Z., Lan, Y., & Wang, Y. (2013). Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices (1st ed., NanoScience and Technology): Springer, Heidelberg.

  • Rodrigues, D. F., Jaisi, D. P., & Elimelech, M. (2012). Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environmental Science & Technology, 47(1), 625–633.

    Article  CAS  Google Scholar 

  • Rodrigues, D. F., Jaisi, D. P., & Elimelech, M. (2013). Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: Implications for nutrient cycling in soil. Environmental Science & Technology, 47(1), 625–633. doi:10.1021/es304002q.

    Article  CAS  Google Scholar 

  • Santos, S. M. A., Dinis, A. M., Rodrigues, D. M. F., Peixoto, F., Videira, R. A., & Jurado, A. S. (2013). Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquatic Toxicology, 142–143, 347–354. doi:10.1016/j.aquatox.2013.09.001.

    Article  CAS  Google Scholar 

  • Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., et al. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 161(2), 135–142. doi:10.1016/j.toxlet.2005.08.011.

    Article  CAS  Google Scholar 

  • Schnorr, J. M., & Swager, T. M. (2011). Emerging Applications of Carbon Nanotubes. Chemistry of Materials, 23(3), 646–657. doi:10.1021/cm102406h.

    Article  CAS  Google Scholar 

  • Serag, M. F., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., et al. (2010). Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS nano, 5(1), 493–499.

    Article  CAS  Google Scholar 

  • Serag, M. F., Kaji, N., Habuchi, S., Bianco, A., & Baba, Y. (2013). Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 3(15), 4856–4862.

    Article  CAS  Google Scholar 

  • Serag, M. F., Kaji, N., Venturelli, E., Okamoto, Y., Terasaka, K., Tokeshi, M., et al. (2011). Functional platform for controlled subcellular distribution of carbon nanotubes. ACS nano, 5(11), 9264–9270.

    Article  CAS  Google Scholar 

  • Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., et al. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 1–21. doi:10.1007/s11051-015-2907-7.

    Article  CAS  Google Scholar 

  • Shan, J., Ji, R., Yu, Y., Xie, Z., & Yan, X. (2015). Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports, 5, 16000. doi:10.1038/srep16000.

    Article  CAS  Google Scholar 

  • Shrestha, B., Acosta-Martinez, V., Cox, S. B., Green, M. J., Li, S., & Cañas-Carrell, J. E. (2013). An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. Journal of Hazardous Materials, 261, 188–197. doi:10.1016/j.jhazmat.2013.07.031.

    Article  CAS  Google Scholar 

  • Shrestha, B., Anderson, T. A., Acosta-Martinez, V., Payton, P., & Cañas-Carrell, J. E. (2015). The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicology and Environmental Safety, 116, 143–149. doi:10.1016/j.ecoenv.2015.03.005.

    Article  CAS  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environmental Science & Technology, 43(24), 9473–9479. doi:10.1021/es901695c.

    Article  CAS  Google Scholar 

  • Tan, X.-M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. Journal of Biomedical Nanotechnology, 3(3), 285–288.

    Article  CAS  Google Scholar 

  • Tan, X.-M., Lin, C., & Fugetsu, B. (2009). Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47(15), 3479–3487.

    Article  CAS  Google Scholar 

  • Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor Cendejas, L. M., Villegas, J., Carreto Montoya, L., & Borjas García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, waterand ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4(5), 577–591.

    Article  CAS  Google Scholar 

  • Tong, Z., Bischoff, M., Nies, L., Applegate, B., & Turco, R. F. (2007). Impact of fullerene (C60) on a soil microbial community. Environmental science & technology, 41(8), 2985–2991.

    Article  CAS  Google Scholar 

  • Tripathi, S., Kapri, S., Datta, A., & Bhattacharyya, S. (2016). Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Advances, 6(50), 43864–43873. doi:10.1039/c6ra01163b.

    Article  CAS  Google Scholar 

  • Tripathi, S., Sonkar, S. K., & Sarkar, S. (2011). Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 3(3), 1176–1181.

    Article  CAS  Google Scholar 

  • Trojanowicz, M. (2006). Analytical applications of carbon nanotubes: a review. TrAC Trends in Analytical Chemistry, 25(5), 480–489. doi:10.1016/j.trac.2005.11.008.

    Article  CAS  Google Scholar 

  • Vaishlya, O. B., Osipov, N. N., & Guseva, N. V. (2015). Carbon nanotubes influence the enzyme activity of biogeochemical cycles of carbon, nitrogen, phosphorus and the pathogenesis of plants in annual agroecosystems. IOP Conference Series: Materials Science and Engineering, 91(1), 012082.

    Article  CAS  Google Scholar 

  • Villagarcia, H., Dervishi, E., de Silva, K., Biris, A. S., & Khodakovskaya, M. V. (2012). Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, 8(15), 2328–2334. doi:10.1002/smll.201102661.

    Article  CAS  Google Scholar 

  • Wang, F., Duan, L., Wang, F., & Chen, W. (2016). Environmental reduction of carbon nanomaterials affects their capabilities to accumulate aromatic compounds. NanoImpact, 1, 21–28. doi:10.1016/j.impact.2016.02.001.

    Article  Google Scholar 

  • Wang, C., Liu, H., Chen, J., Tian, Y., Shi, J., Li, D., et al. (2014). Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. Journal of Hazardous Materials, 274, 404–412. doi:10.1016/j.jhazmat.2014.04.036.

    Article  CAS  Google Scholar 

  • Wang, D., Wang, G., Zhang, G., Xu, X., & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresource technology, 131, 527–530.

    Article  CAS  Google Scholar 

  • Wild, E., & Jones, K. C. (2009). Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology, 43(14), 5290–5294.

    Article  CAS  Google Scholar 

  • Wu, M.-Y., Hao, R.-C., Tian, X.-H., Wang, X.-L., Ma, G.-H., & Tang, H.-T. (2010). Effects of adding nono-carbon in slow-released fertilizer on grain yield and nitrogen use efficiency of super hybrid rice. Hybrid Rice, 4, 034.

    Google Scholar 

  • Wu, M.-Y. Effects of incorporation of nano-carbon into slow-released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. In Intelligent System Design and Engineering Applications (ISDEA), 2013 Third International Conference on, 2013 (pp. 676–681): IEEE.

  • Yatim, N. M., Shaaban, A., Dimin, M. F., & Yusof, F. (2015). Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using plackett burman experimental design. Procedia - Social and Behavioral Sciences, 195, 315–323. doi:10.1016/j.sbspro.2015.06.358.

    Article  Google Scholar 

  • Yu, D., Zhang, Q., & Dai, L. (2010). Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. Journal of the American Chemical Society, 132(43), 15127–15129.

    Article  CAS  Google Scholar 

  • Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies Agriculture, 3(1), 17. doi:10.1186/s40538-016-0070-8.

    Article  Google Scholar 

  • Zhao, X., & Liu, R. (2012). Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environment International, 40, 244–255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meththika Vithanage or Yong Sik Ok.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10653-017-0050-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithanage, M., Seneviratne, M., Ahmad, M. et al. Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health 39, 1421–1439 (2017). https://doi.org/10.1007/s10653-017-9957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9957-y

Keywords

Navigation