Skip to main content

Reduced Models of the Systemic Arterial Circulation

  • Chapter
Vascular Dynamics

Part of the book series: NATO ASI Series ((ASIAS,volume 166))

Abstract

The systemic arterial tree is a branching network of tubes which accepts pulsatile flow from the left ventricle and passes this on, in an almost steady stream, into the arterioles. The details of function and of arterial structure are complex. The complexity of the circulatory system, in particular the interpretation of the pressure-flow relationships in the arterial trees, have promoted an impressively thorough theoretical and experimental analysis. Elegant reviews with extensive references have been provided by Noordergraaf (1978), Milnor (1982) and O’Rourke (1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attinger, E.O., Sugawara, H., Navarro, A., Ricetto, A., and Martin, R., 1966, Pressure-Flow relations in dog arteries, Circ. Res., 19: 230.

    Article  PubMed  CAS  Google Scholar 

  • Avolio A.P., 1980, Multi-branched model of the human arterial system, Med. Biol. Eng. Comput., 18: 709.

    Article  PubMed  CAS  Google Scholar 

  • Bekey, G.A., and Yamashiro, S.M., 1976, Parameter estimation in mathematical models of biological systems, in: Advances in Biomedical Engineering”, J.H.U. Brown, and J.F. Dickson, III, eds., Academic Press, New York, pp. 1.

    Google Scholar 

  • Burattini R., 1981, An arterial tree input impedance model: Analysis in the frequencies domain, Biomechan., 4, 10: 20.

    Google Scholar 

  • Burattini, R., and Gnudi, G., 1982, Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results, Med. Biol. Eng. Comput., 20: 134.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., and Gnudi, G., 1983, Assessment of a parametric identification procedure of simple models for left ventricular afterload, Med. Biol. Eng. Comput., 21: 39.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Fioretti, S., and Jetto, L., 1985a, A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state, Comput. Biomed. Res., 18: 303.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Sipkema, P., van Huis, G.A., Westerhof, N., 1985b, Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model, Ann. Biomed. Eng., 13: 385.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Gnudi, G., Westerhof, N., and Fioretti, S., 1987a, Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study, Comput. Biomed. Res., 20: 154.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Reale, P., Borgdorff, P., and Westerhof, N., 1987b, Dynamic model of the short-term regulation of arterial pressure in the cat, Med. Biol. Eng. Comput., 25: 269.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Borgdorff, P., and Westerhof, N., 1987c, Dynamics of the short-term regulation of pressure: frequency dependence and role of arterial compliance, Med. Biol. Eng. Comput., 25: 277.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., and Di Carlo, S., 1988, Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance, IEEE Trans. Biomed. Eng., 35: 53.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., and Campbell, K.B., 1989, Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root. (in press), IEEE Trans. Biomed. Eng.

    Google Scholar 

  • Campbell, K.B., Ringo, J.A., Neti, C., and Alexander, J.E., 1984, Informational analysis of left-ventricle/systemic-arterial interaction, Ann. Biomed. Eng., 12: 209.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R.H., and Pace, J.B., 1975, Pressure-flow relations in the vessels of the canine aortic arch, Am. J. Physiol., 228 (1): 1.

    PubMed  CAS  Google Scholar 

  • Deswysen, B., 1977, Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed, with particular attention to the physical meaning of the left ventricular parameters. IEEE Trans. Biomed. Eng., BME-24: 29.

    Google Scholar 

  • Deswysen, B., Charlier, A.A., and Gevers, M., 1980, Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model, Med. Biol. Eng. Comput., 18: 153.

    Article  PubMed  CAS  Google Scholar 

  • Dujardin, J.-P L., and Stone, D.N., 1981, Characteristic impedance of the proximal aorta determined in the time and frequency domain: A comparison, Med. Biol. Eng. Comput.,19: 565.

    Google Scholar 

  • Euler, L., 1862, Principia pro motu sanguinis per arterias determinado, Opera postuma mathematica et physica anno 1844 detecta, ediderunt P.H. Fuss et N. Fuss, Petropoli: Apud Eggers et socios, 2: 814.

    Google Scholar 

  • Frank, O., 1899, Die Grundform des Arteriellen Pulses, Z. Biol., 37: 483.

    Google Scholar 

  • Hales, S., 1733, “Statical Essays: Containing Haemastaticks”, vol. 2, Innys and Manby, London. Reprinted, 1964, n. 22, History of Medicine series, Library of New York Academy of Medicine, New York, Hafner Publishing.

    Google Scholar 

  • Latham, R.D. 1988, Pulse propagation in the systemic arterial tree, in: “Vascular Dynamics”, N. Westerhof and D.R. Gross, eds., Plenum Press, New York, N.Y.

    Google Scholar 

  • Latham, R.D., Westerhof, N., Sipkema, P., Rubal, B.J., Reuderink, P., and Murgo, J.P., 1985, Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures, Pathophysiol. Nat. Hist., 72: 1257.

    CAS  Google Scholar 

  • Laxminarayan, S., Sipkema, P., and Westerhof, N., 1978, Characterization of the arterial system in the time domain, IEEE Trans. Biomed. Eng., BME 25: 177.

    Article  CAS  Google Scholar 

  • McDonald, D.A., 1974, “Blood Flow in Arteries”, ed. 2, Edward Arnold, London.

    Google Scholar 

  • Mills, C.J., Gabe, I.T., Gault, J.H., Mason, D.T., Ross, J., Jr., Braunwald, E., and Shillingford, J.P., 1970, Pressure-flow relationships and vascular impedance in man, Cardiovasc. Res., 4: 405.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, W.R., 1982, “Hemodynamics”, Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Murgo, J.P., Westerhof, N., Giolma, J.P., and Altobelli, S.A., 1980, Aortic input impedance in normal man: Relationship to pressure wave forms, Circ., 62: 105.

    Article  CAS  Google Scholar 

  • Murgo, J.P., Westerhof, N., Giolma, J.P., and Altobelli, S.A., 1981, Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: Relationship to input impedance, Circ., 63: 122.

    Article  CAS  Google Scholar 

  • Nichols, W.W., Avolio, A.P., and O’Rourke, M.F., 1986, Ascending aortic impedance patterns in the kangaroo: Their explanation and relation to pressure waveforms, Circ. Res., 59: 247.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M.I.M., Gabe, I.T., Trenchard, D., and Guz, A., 1967, Blood pressure and flow in the ascending aorta of conscious dogs, Cardiovasc. Res., 1: 9.

    Article  PubMed  CAS  Google Scholar 

  • Noble, M.I.M., 1979, Left ventricular load, arterial impedance and their interrelationship, Cardiovasc. Res., 13: 183.

    Article  PubMed  CAS  Google Scholar 

  • Noordergraaf, A., Verdouw, P.D., van Brummelen, A.G.W. and Wiegel, F.W., 1964, Analog of the arterial bed, in: “Pulsatile Blood Flow”, E.O. Attinger, ed., McGraw-Hill, New York, 373.

    Google Scholar 

  • Noordergraaf, A., 1969, Hemodynamics, in: “Biological Engineering”, H.P. Schwan, ed., McGraw-Hill, New York, 391.

    Google Scholar 

  • Noordergraaf, A., 1978, “Circulatory System Dynamics”, Academic Press, New York.

    Google Scholar 

  • O’Rourke, M.F., 1967, Pressure and flow waves in the systemic arteries and the anatomical design of the arterial system, J. Appl. Physiol., 23: 139.

    PubMed  Google Scholar 

  • O’Rourke, M.F., and Taylor, M.G., 1967, Input impedance of the systemic circulation, Circ. Res., 20: 365.

    Article  PubMed  Google Scholar 

  • O’Rourke, M.F., 1982a, Vascular impedance in studies of arterial and cardiac function, Physiol. Rev., 62: 570.

    PubMed  Google Scholar 

  • O’Rourke, M.F., 1982b, “Arterial Function in Health and Desease”, Churchill & Livingstone, Edinburgh.

    Google Scholar 

  • O’Rourke, M.F., Yaginuma, T., and Avolio, A.P., 1984, Physiological and pathophysiological implications of ventricular/vascular coupling, Ann. Biomed. Eng., 12: 119.

    Article  PubMed  Google Scholar 

  • O’Rourke, M.F., 1987, Principles of arterial hemodynamics, in: “Mechanics of the Circulation”, H.E.D.J. ter Keurs and J.V. Tyberg, eds., Martinus Nijhoff Publ., Dordrecht, 233.

    Google Scholar 

  • Patel, D.J., De Freitas, F.M., and Fry, D.L., 1963a, Hydraulic input impedance to aorta and pulmonary artery in dogs, J. Appl. Physiol., 18: 134.

    PubMed  CAS  Google Scholar 

  • Patel, D.J., De Freitas, F.M., Greenfield, J.C. Jr., and Fry, D.L., 1963b, Relationship of radius to pressure along the aorta in living dogs, J. Appl. Physiol., 18: 1111.

    PubMed  CAS  Google Scholar 

  • Sipkema, P., and Westerhof, N., 1975, Effective length of the arterial system, Ann. Biomed. Eng., 3: 296.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.G., 1957, An approach to an analysis of the arterial pulse wave. I. Oscillations in an attenuating line, II. Fluid oscillations in an elastic pipe, Phys. Med. Biol., 1: 258.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.G., 1966, The input impedance of an assembly of randomly branching elastic tubes, Biophys. J., 6: 29.

    Article  PubMed  CAS  Google Scholar 

  • Toy, S.M., Melbin, J., and Noordergraaf, A., 1985, Reduced models of arterial systems, IEEE Trans. Biomed. Eng., BME 32: 174.

    Article  CAS  Google Scholar 

  • Westerhof, N., Bosman, F., De Vries, C.J., and Noordergraaf, A., 1969, Analog studies of the human systemic arterial tree, J. Biomech., 2: 121.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof, N., Elzinga, G., and Sipkema P., 1971, An artificial arterial system for pumping hearts, J. Appl. Physiol., 31: 776.

    PubMed  CAS  Google Scholar 

  • Westerhof, N., Elzinga, G., and Van den Bos, G.C., 1973, Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree, Med. Biol. Eng., 11: 710.

    Article  PubMed  CAS  Google Scholar 

  • Westerhof, N., Van den Bos, G.C., and Laxminarayan, S., 1978, Arterial reflection, in: “The Arterial System”, R.D. Bauer and R. Busse, eds., Springer-Verlag, Berlin, 48.

    Chapter  Google Scholar 

  • Westerhof, N., Sipkema, P., Elzinga, G., Murgo, J.P., and Giolma, J.P., 1979, Arterial impedance, in: “Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles”, N.H.C. Hwang, D.R. Gross, and D.J. Patel, eds., University Park Press, Baltimore, MD, pp. 111.

    Google Scholar 

  • Wetterer, E., and Kenner, T., 1968, “Die Dynamik des Arterienpulses”, Springer-Verlag, Berlin.

    Google Scholar 

  • Yin, F.C.P.,1988, Arterial Compliance; Physiological Viewpoint, in:“Vascular Dynamics”, N. Westerhof and D.R. Gross, eds., Plenum Press, New York, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Burattini, R. (1989). Reduced Models of the Systemic Arterial Circulation. In: Westerhof, N., Gross, D.R. (eds) Vascular Dynamics. NATO ASI Series, vol 166. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7856-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7856-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7858-7

  • Online ISBN: 978-1-4684-7856-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics