Reduced Models of the Systemic Arterial Circulation

  • Roberto Burattini
Part of the NATO ASI Series book series (volume 166)


The systemic arterial tree is a branching network of tubes which accepts pulsatile flow from the left ventricle and passes this on, in an almost steady stream, into the arterioles. The details of function and of arterial structure are complex. The complexity of the circulatory system, in particular the interpretation of the pressure-flow relationships in the arterial trees, have promoted an impressively thorough theoretical and experimental analysis. Elegant reviews with extensive references have been provided by Noordergraaf (1978), Milnor (1982) and O’Rourke (1982).


Input Impedance Arterial System Total Peripheral Resistance Tube Model Impedance Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attinger, E.O., Sugawara, H., Navarro, A., Ricetto, A., and Martin, R., 1966, Pressure-Flow relations in dog arteries, Circ. Res., 19: 230.PubMedCrossRefGoogle Scholar
  2. Avolio A.P., 1980, Multi-branched model of the human arterial system, Med. Biol. Eng. Comput., 18: 709.PubMedCrossRefGoogle Scholar
  3. Bekey, G.A., and Yamashiro, S.M., 1976, Parameter estimation in mathematical models of biological systems, in: Advances in Biomedical Engineering”, J.H.U. Brown, and J.F. Dickson, III, eds., Academic Press, New York, pp. 1.Google Scholar
  4. Burattini R., 1981, An arterial tree input impedance model: Analysis in the frequencies domain, Biomechan., 4, 10: 20.Google Scholar
  5. Burattini, R., and Gnudi, G., 1982, Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results, Med. Biol. Eng. Comput., 20: 134.PubMedCrossRefGoogle Scholar
  6. Burattini, R., and Gnudi, G., 1983, Assessment of a parametric identification procedure of simple models for left ventricular afterload, Med. Biol. Eng. Comput., 21: 39.PubMedCrossRefGoogle Scholar
  7. Burattini, R., Fioretti, S., and Jetto, L., 1985a, A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state, Comput. Biomed. Res., 18: 303.PubMedCrossRefGoogle Scholar
  8. Burattini, R., Sipkema, P., van Huis, G.A., Westerhof, N., 1985b, Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model, Ann. Biomed. Eng., 13: 385.PubMedCrossRefGoogle Scholar
  9. Burattini, R., Gnudi, G., Westerhof, N., and Fioretti, S., 1987a, Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study, Comput. Biomed. Res., 20: 154.PubMedCrossRefGoogle Scholar
  10. Burattini, R., Reale, P., Borgdorff, P., and Westerhof, N., 1987b, Dynamic model of the short-term regulation of arterial pressure in the cat, Med. Biol. Eng. Comput., 25: 269.PubMedCrossRefGoogle Scholar
  11. Burattini, R., Borgdorff, P., and Westerhof, N., 1987c, Dynamics of the short-term regulation of pressure: frequency dependence and role of arterial compliance, Med. Biol. Eng. Comput., 25: 277.PubMedCrossRefGoogle Scholar
  12. Burattini, R., and Di Carlo, S., 1988, Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance, IEEE Trans. Biomed. Eng., 35: 53.PubMedCrossRefGoogle Scholar
  13. Burattini, R., and Campbell, K.B., 1989, Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root. (in press), IEEE Trans. Biomed. Eng.Google Scholar
  14. Campbell, K.B., Ringo, J.A., Neti, C., and Alexander, J.E., 1984, Informational analysis of left-ventricle/systemic-arterial interaction, Ann. Biomed. Eng., 12: 209.PubMedCrossRefGoogle Scholar
  15. Cox, R.H., and Pace, J.B., 1975, Pressure-flow relations in the vessels of the canine aortic arch, Am. J. Physiol., 228 (1): 1.PubMedGoogle Scholar
  16. Deswysen, B., 1977, Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed, with particular attention to the physical meaning of the left ventricular parameters. IEEE Trans. Biomed. Eng., BME-24: 29.Google Scholar
  17. Deswysen, B., Charlier, A.A., and Gevers, M., 1980, Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model, Med. Biol. Eng. Comput., 18: 153.PubMedCrossRefGoogle Scholar
  18. Dujardin, J.-P L., and Stone, D.N., 1981, Characteristic impedance of the proximal aorta determined in the time and frequency domain: A comparison, Med. Biol. Eng. Comput.,19: 565.Google Scholar
  19. Euler, L., 1862, Principia pro motu sanguinis per arterias determinado, Opera postuma mathematica et physica anno 1844 detecta, ediderunt P.H. Fuss et N. Fuss, Petropoli: Apud Eggers et socios, 2: 814.Google Scholar
  20. Frank, O., 1899, Die Grundform des Arteriellen Pulses, Z. Biol., 37: 483.Google Scholar
  21. Hales, S., 1733, “Statical Essays: Containing Haemastaticks”, vol. 2, Innys and Manby, London. Reprinted, 1964, n. 22, History of Medicine series, Library of New York Academy of Medicine, New York, Hafner Publishing.Google Scholar
  22. Latham, R.D. 1988, Pulse propagation in the systemic arterial tree, in: “Vascular Dynamics”, N. Westerhof and D.R. Gross, eds., Plenum Press, New York, N.Y.Google Scholar
  23. Latham, R.D., Westerhof, N., Sipkema, P., Rubal, B.J., Reuderink, P., and Murgo, J.P., 1985, Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures, Pathophysiol. Nat. Hist., 72: 1257.Google Scholar
  24. Laxminarayan, S., Sipkema, P., and Westerhof, N., 1978, Characterization of the arterial system in the time domain, IEEE Trans. Biomed. Eng., BME 25: 177.CrossRefGoogle Scholar
  25. McDonald, D.A., 1974, “Blood Flow in Arteries”, ed. 2, Edward Arnold, London.Google Scholar
  26. Mills, C.J., Gabe, I.T., Gault, J.H., Mason, D.T., Ross, J., Jr., Braunwald, E., and Shillingford, J.P., 1970, Pressure-flow relationships and vascular impedance in man, Cardiovasc. Res., 4: 405.PubMedCrossRefGoogle Scholar
  27. Milnor, W.R., 1982, “Hemodynamics”, Williams & Wilkins, Baltimore, MD.Google Scholar
  28. Murgo, J.P., Westerhof, N., Giolma, J.P., and Altobelli, S.A., 1980, Aortic input impedance in normal man: Relationship to pressure wave forms, Circ., 62: 105.CrossRefGoogle Scholar
  29. Murgo, J.P., Westerhof, N., Giolma, J.P., and Altobelli, S.A., 1981, Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: Relationship to input impedance, Circ., 63: 122.CrossRefGoogle Scholar
  30. Nichols, W.W., Avolio, A.P., and O’Rourke, M.F., 1986, Ascending aortic impedance patterns in the kangaroo: Their explanation and relation to pressure waveforms, Circ. Res., 59: 247.PubMedCrossRefGoogle Scholar
  31. Noble, M.I.M., Gabe, I.T., Trenchard, D., and Guz, A., 1967, Blood pressure and flow in the ascending aorta of conscious dogs, Cardiovasc. Res., 1: 9.PubMedCrossRefGoogle Scholar
  32. Noble, M.I.M., 1979, Left ventricular load, arterial impedance and their interrelationship, Cardiovasc. Res., 13: 183.PubMedCrossRefGoogle Scholar
  33. Noordergraaf, A., Verdouw, P.D., van Brummelen, A.G.W. and Wiegel, F.W., 1964, Analog of the arterial bed, in: “Pulsatile Blood Flow”, E.O. Attinger, ed., McGraw-Hill, New York, 373.Google Scholar
  34. Noordergraaf, A., 1969, Hemodynamics, in: “Biological Engineering”, H.P. Schwan, ed., McGraw-Hill, New York, 391.Google Scholar
  35. Noordergraaf, A., 1978, “Circulatory System Dynamics”, Academic Press, New York.Google Scholar
  36. O’Rourke, M.F., 1967, Pressure and flow waves in the systemic arteries and the anatomical design of the arterial system, J. Appl. Physiol., 23: 139.PubMedGoogle Scholar
  37. O’Rourke, M.F., and Taylor, M.G., 1967, Input impedance of the systemic circulation, Circ. Res., 20: 365.PubMedCrossRefGoogle Scholar
  38. O’Rourke, M.F., 1982a, Vascular impedance in studies of arterial and cardiac function, Physiol. Rev., 62: 570.PubMedGoogle Scholar
  39. O’Rourke, M.F., 1982b, “Arterial Function in Health and Desease”, Churchill & Livingstone, Edinburgh.Google Scholar
  40. O’Rourke, M.F., Yaginuma, T., and Avolio, A.P., 1984, Physiological and pathophysiological implications of ventricular/vascular coupling, Ann. Biomed. Eng., 12: 119.PubMedCrossRefGoogle Scholar
  41. O’Rourke, M.F., 1987, Principles of arterial hemodynamics, in: “Mechanics of the Circulation”, H.E.D.J. ter Keurs and J.V. Tyberg, eds., Martinus Nijhoff Publ., Dordrecht, 233.Google Scholar
  42. Patel, D.J., De Freitas, F.M., and Fry, D.L., 1963a, Hydraulic input impedance to aorta and pulmonary artery in dogs, J. Appl. Physiol., 18: 134.PubMedGoogle Scholar
  43. Patel, D.J., De Freitas, F.M., Greenfield, J.C. Jr., and Fry, D.L., 1963b, Relationship of radius to pressure along the aorta in living dogs, J. Appl. Physiol., 18: 1111.PubMedGoogle Scholar
  44. Sipkema, P., and Westerhof, N., 1975, Effective length of the arterial system, Ann. Biomed. Eng., 3: 296.PubMedCrossRefGoogle Scholar
  45. Taylor, M.G., 1957, An approach to an analysis of the arterial pulse wave. I. Oscillations in an attenuating line, II. Fluid oscillations in an elastic pipe, Phys. Med. Biol., 1: 258.PubMedCrossRefGoogle Scholar
  46. Taylor, M.G., 1966, The input impedance of an assembly of randomly branching elastic tubes, Biophys. J., 6: 29.PubMedCrossRefGoogle Scholar
  47. Toy, S.M., Melbin, J., and Noordergraaf, A., 1985, Reduced models of arterial systems, IEEE Trans. Biomed. Eng., BME 32: 174.CrossRefGoogle Scholar
  48. Westerhof, N., Bosman, F., De Vries, C.J., and Noordergraaf, A., 1969, Analog studies of the human systemic arterial tree, J. Biomech., 2: 121.PubMedCrossRefGoogle Scholar
  49. Westerhof, N., Elzinga, G., and Sipkema P., 1971, An artificial arterial system for pumping hearts, J. Appl. Physiol., 31: 776.PubMedGoogle Scholar
  50. Westerhof, N., Elzinga, G., and Van den Bos, G.C., 1973, Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree, Med. Biol. Eng., 11: 710.PubMedCrossRefGoogle Scholar
  51. Westerhof, N., Van den Bos, G.C., and Laxminarayan, S., 1978, Arterial reflection, in: “The Arterial System”, R.D. Bauer and R. Busse, eds., Springer-Verlag, Berlin, 48.CrossRefGoogle Scholar
  52. Westerhof, N., Sipkema, P., Elzinga, G., Murgo, J.P., and Giolma, J.P., 1979, Arterial impedance, in: “Quantitative Cardiovascular Studies Clinical and Research Applications of Engineering Principles”, N.H.C. Hwang, D.R. Gross, and D.J. Patel, eds., University Park Press, Baltimore, MD, pp. 111.Google Scholar
  53. Wetterer, E., and Kenner, T., 1968, “Die Dynamik des Arterienpulses”, Springer-Verlag, Berlin.Google Scholar
  54. Yin, F.C.P.,1988, Arterial Compliance; Physiological Viewpoint, in:“Vascular Dynamics”, N. Westerhof and D.R. Gross, eds., Plenum Press, New York, N.Y.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Roberto Burattini
    • 1
  1. 1.Department of Electronics and AutomaticaUniversity of AnconaAnconaItaly

Personalised recommendations