Skip to main content
Log in

Informational analysis of left-ventricle/systemic-arterial interaction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Studies of left ventrical (LV) and systemic arterial (SA) interaction can be grouped into four categories: 1) prediction of pressure and flow waveforms, 2) changes in LV/SA function with changes in SA properties, 3) identification of criteria that reveal matching between LV and SA properties, 4) definition of LV afterload. Whereas results from studies in categories 1, 2, and 3 reveal the consequences of interaction, results from studies in category 4 come closest to revealing the true character of LV/SA interaction. A useful description arising from category 4 is that of a circular feedback path connecting LV outflow, SA input-impedance, LV pressure, and LV pump properties. The identification of a node in this scheme results in the separation of LV functions into active functions and loading functions and the separation of LV/SA load into LV load and SA loading elements. The time-varying LV elastance participates in both LV active functions and LV loading functions, with the former dominating the latter. Total peripheral resistance dominates all other LV and SA loading elements in its loading effects. Although an elastance-resistance LV model coupled with a simple second-order SA load model accounts for many reported observations on LV/SA interaction, data from sudden aortic occlusion studies indicate a need to consider yet another interaction action. Evidence is presented to suggest the existence of an LV pump element that couples ejection events with relaxation and filling events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corey, P.D., R.R. Wemple, and T.J. VanderWerff. A combined left ventricle/systemic arterial model.J. Biomech. 8:9–15, 1975.

    Article  PubMed  CAS  Google Scholar 

  2. Covell, J.W., Pouleur, H., and J. Ross, Jr. Left ventricle wall stress and aortic impedance.Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:202–207, 1980.

    CAS  Google Scholar 

  3. Deswysen, B.A. Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed with particular attention to the physical meaning of the left ventricular parameters.IEEE Trans. Biomed. Eng. BME-24:29–38, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Elzinga, G., and N. Westerhof. Pressure and flow generated by the left ventricle against different impedances.Circ. Res. 32:178–186, 1973.

    PubMed  CAS  Google Scholar 

  5. Elzinga, G. and N. Westerhof. End-diastolic volume and source impedance of the heart. In:The Physiological Basis of Starling's Law of the Heart. CIBA Foundation Symposium 24. Elsevier: North Holland, 1974, pp. 241–255.

    Google Scholar 

  6. Elzinga, G. and N. Westerhof. “Pressure-Volume” relations in isolated cat trabecula.Circ. Res. 38:297–302, 1976.

    PubMed  CAS  Google Scholar 

  7. Frank, O. Die Grundform des arteriellen Pulses.Z. Biol. 37:483–526, 1898.

    Google Scholar 

  8. Hunter, W.C., J.S. Janicki, and K.T. Weber. Mechanical properties of the ventricle during systole.Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:169–174, 1980.

    CAS  Google Scholar 

  9. Hunter, W.C., J.S. Janicki, K.T. Weber, and A. Noordergraaf. Flow-pulse response: A new method for the characterization of ventricular mechanics.Am. J. Physiol. 237:H282-H292, 1979.

    PubMed  CAS  Google Scholar 

  10. Hunter, W.C., J.S. Janicki, K.T. Weber, and A. Noordergraaf. Systolic mechanical properties of the left ventricle.Circ. Res. 52:319–327, 1983.

    PubMed  CAS  Google Scholar 

  11. Ishide, N., Y. Shimiy, Y. Maruyama, Y. Koiwa, T. Nunokawa, S. Isoyama, S. Kitaoka, K. Tamaki, E. Ino-oka, and T. Takishima. Effects of changes in the aortic input impedances on systolic pressure-ejected volume relationships in the isolated supported canine left ventricle.Cardiovasc. Res. 14:229–243, 1980.

    PubMed  CAS  Google Scholar 

  12. Kenner, T. and K.P. Pfeiffer. Studies on the optimal matching between heart and arterial system. In:Cardiac Dynamics, edited by J. Baan, A.C. Arntzenius, and E.L. Yellin. Boston: Martinus Nijhoff Publisher, 1980, pp. 261–270.

    Google Scholar 

  13. Miflin, R.. A super linearly convergent algorithm for minimization without evaluating derivatives.Math. Progr. 9:100–117, 1975.

    Article  Google Scholar 

  14. Milnor, W.R. Arterial impedance as ventricular afterload.Circ. Res. 36:565–570, 1975.

    PubMed  CAS  Google Scholar 

  15. Nichols, W.W., C.J. Pepine, E.A. Geiser, and C.R. Conti. Vascular load defined by the aortic in impedance spectrum.Fed. Proc. Fed. Am. Soc. Exp. Biol. 39:196–201, 1980.

    CAS  Google Scholar 

  16. Noble, M.I.M. Left ventricular load, arterial impedance and their inter-relationship.Cardiovasc. Res. 13:183–198, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Noordergraaf, A. and J. Melbin. Ventricular afterload: A succinct yet comprehensive definition.Am. Heart J. 95:545–547, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Ono, K., T. Uozumi, C. Yoshimoto, and T. Kenner. The optimal cardiovascular regulation of the arterial blood pressure. In:Cardiovascular System Dynamics, edited by T. Kenner, R. Busse, and H. Hunghofer-Szalkay, New York: Plenum Press, 1982, pp. 119–131.

    Google Scholar 

  19. Paulus, W.J., V.A. Claes, and D.L. Brutsaert. Physiologic loading of isolated feline cardiac muscle.Circ. Res. 44:491–497, 1979.

    PubMed  CAS  Google Scholar 

  20. Pfeiffer, K.P. and T. Kenner. On the optimal strategy of cardiac ejection. In:Cardiovascular System Dynamics, edited by T. Kenner, R. Busse, and H. Hunghofer-Szalkay. New York: Plenum Press, 1982, pp. 133–136.

    Google Scholar 

  21. Piene, H. Interaction between the right heart ventricle and its arterial load: A quantitative solution.Am. J. Physiol. 238:H923-H937, 1980.

    Google Scholar 

  22. Piene, H. and T. Sund. Does normal pulmonary impedance constitute the optimum load for the right ventricle?.Am. J. Physiol. 242:H154-H160, 1982.

    PubMed  CAS  Google Scholar 

  23. Ringo, J.A., K.B. Campbell, B.K. Slinker, and J.D. Robinette. Internal series resistance—An important LV pump property. Proceedings of the 35th Annual Conference on Engineering in Medicine and Biology, 24:64, 1982.

    Google Scholar 

  24. Sagawa, K. Representation of cardiac pump with special reference to afterload. In:Cardiovascular System Dynamics, edited by T. Kenner, R. Busse, and H. Hunghofer-Szalkay. New York: Plenum Press, 1982, pp. 1–18.

    Google Scholar 

  25. Schroff, S., J.S. Janicki, and K.T. Weber. Left ventricle systolic dynamics in terms of its chamber mechanical properties.Am. J. Physiol. 245:H110-H124, 1983.

    Google Scholar 

  26. Sdougos, H.P., D.L. Schultz, L.B. Tan, D.H. Bergel, B. Rajagopalan, and G. De J. Lee. The effects of peripheral impedance and inotropic state on the power output of the left ventricle in dogs.Circ. Res. 50:74–85, 1982.

    PubMed  CAS  Google Scholar 

  27. Slinker, B.K., K.B. Campbell, J.A. Ringo, and P.A. Klavano. LV pump properties: Ejecting beat depends on previous beat. Proceedings of the 35th Annual Conference on Engineering in Medicine and Biology, 24:62, 1982.

    Google Scholar 

  28. Sonnenblick, E.H. and S.E. Downing. Afterload as a primary determinant of ventricular performance.Am. J. Physiol. 204:604–610, 1963.

    PubMed  CAS  Google Scholar 

  29. Suga, H. and K. Sagawa. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle.Circ. Res. 35:117–125, 1974.

    PubMed  CAS  Google Scholar 

  30. Suga, H., K. Sagawa, and L. Demer. Determinants of instantaneous pressure in canine left ventricle: Time and volume specification.Circ. Res. 46:256–263, 1980.

    PubMed  CAS  Google Scholar 

  31. Sunagawa, K., D. Burkhoff, K.O. Lim, and K. Sagawa, Impedance loading servo pump system for the excised canine ventricle.Am. J. Physiol. 243:H346-H350, 1982.

    PubMed  CAS  Google Scholar 

  32. Sungawa, K., A. Yamada, Y. Senda, Y. Kikuch, M. Nakamura, T. Shibahara, and Y. Nose. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle.IEEE Trans. Biomed. Eng. BME-299–305, 1980.

    Google Scholar 

  33. Taylor, M.G. The optimum elastic properties of arteries. In:CIBA Foundation Symposium on Circulatory and Respiratory Mass Transport, edited by G.E.W. Wolstenholme and J. Knight. Boston: Little, Brown and Co., 1969, pp. 136–147.

    Google Scholar 

  34. Weber, K.T., J.S. Janicki, W.C. Hunter, S. Schroff, E.S. Pearlman, and A.P. Fishman. The contractile behavior of the heart and its functional coupling to the circulation.Prog. Cardiovasc. Dis. 24:375–400, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Welkowitz, W. Indices of cardiac status.IEEE Trans. Biomed. Eng. BME-28:553–567, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Yamashiro, S.M., J.A. Daubenspeck, F.M. Bennett, S.K. Edelman, and F.S. Grodins. Optimal control analysis of left ventricular ejection. In:Cardiovascular System Dynamics, edited by J. Baan, A. Noordergraaf, and J. Raines. Cambridge, Mass.: MIT Press, 1978, pp. 427–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, K.B., Ringo, J.A., Neti, C. et al. Informational analysis of left-ventricle/systemic-arterial interaction. Ann Biomed Eng 12, 209–231 (1984). https://doi.org/10.1007/BF02584231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584231

Keywords

Navigation