Skip to main content
Log in

Multi-branched model of the human arterial system

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A model of the human arterial system was constructed based on the anatomical branching structure of the arterial tree. Arteries were divided into segments represented by uniform thin-walled elastic tubes with realistic arterial dimensions and wall properties. The configuration contains 128 segments accounting for all the central vessels and major peripheral arteries supplying the extremities including vessels of the order of 2·0 mm diameter. Vascular impedance and pressure and flow waveforms were determined at various locations in the system and good agreement was found with experimental measurements. Use of the model is illustrated in investigating wave propagation in the arterial system and in simulation of arterial dynamics in such pathological conditions as arteriosclerosis and presence of a stenosis in the femoral artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ϱ:

blood density

co :

pulse wave velocity

σ:

Poisson ratio for arterial wall

F 10 :

the expression\(\frac{{2J_1 \left( {\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)}}{{\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} J_0 \left( {\alpha j^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)}}\). whereJ 0 andJ 1 are Bessel functions of the first kind, and order zero and one, respectively, and\(\alpha = R_0 \sqrt {{{\omega \rho } \mathord{\left/ {\vphantom {{\omega \rho } \mu }} \right. \kern-\nulldelimiterspace} \mu }} \)

λ:

propagation constant

ω:

angular frequency

E :

Young's modulus of arterial wall

h :

wall thickness

R 0 :

internal radius of arterial segment

ηw :

viscoelasticity of the arterial wall

Γ:

reflection coefficient

μ:

blood viscosity

References

  • Avolio, A. P., O'Rourke, M. F., Mang, K., Bason, P. andGow, B. S. (1976) A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs.Amer. J. Physiol. 230, 868.

    Google Scholar 

  • Bergel, D. H. (1961) The dynamic elastic properties of the arterial wall.J. Physiol. 156, 458

    Google Scholar 

  • Frank, O., (1899) Die Grundfurm des artiriellen Puls.Zeitschrift fur Biologie. 37, 483

    Google Scholar 

  • Gupta, T. C. andWiggers, C. J., (1951) Basic hemodynamic changes produced by aortic coarctation in different degrees.Circ. 3, 17

    Google Scholar 

  • Hales, S., (1733) ‘Haemastatiks’, Hafner Publishing Co., London.

    Google Scholar 

  • Hardung, V. (1962) Propagation of pulse waves in viscoelastic tubings.In W. F. Hamilton andP. Dows (eds)Handbook of Physiology, Circulation Vol. 1, Amer. Physiol. Soc.

  • Jager, G. N., Westerhof, N., andNoordergraaf, A. (1965) Oscillatory flow impedance in an electrical analog of the arterial system: representation of sleeve effect and non-newtonian properties of blood.Circ. Res. 26, 121

    Google Scholar 

  • Little, J. M., Sheil, A. G. R., Loewenthal, J. andGoodman, A. H. (1968) Prognostic value of intraoperative blood flow measurements in femoropopliteal bypass vein grafts.The Lancet,2, 648

    Article  Google Scholar 

  • McDonald, D. A. (1974) ‘Blood flow in Arteries’, (Arnold, London, 2nd edn.)

    Google Scholar 

  • Mills, C. J., Gabe, I. T., Gault, J. H., Mason, P. T., Ross, J., Braunwald, E. andShillingford, J. P., (1970) Pressure-Flow relationships and vascular impedance in man.Cardiovasc. Res. 4, 405

    Article  Google Scholar 

  • Noordergraaf, A., Verdouw, P. D. andBoom, H. B. C. (1963) The use of an analog computer in a circulation model.Prog. Card. Diseases 5, 419

    Google Scholar 

  • O'Rourke, M. F. (1965) ‘Pressure and flow in arteries’ M.D. Thesis, University of Sydney

  • O'Rourke, M. E., andTaylor, M. G., (1966) Vascular impedance of the femoral bed.Circ. Res. 18: 126

    Google Scholar 

  • O'Rourke, M. E., (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system.J. Appl. Physiol. 23, 139.

    Google Scholar 

  • Rideout, V. C. andDick, D. E., (1967) Differencedifferential equations for fluid flow in distensible tubes.IEEE Trans, Biomed, Eng. BME-14, 171.

    Google Scholar 

  • Taylor, M. G., (1959) The experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall; tobether with an analysis of the characteristics required in an electrical analogue.Phys. Med. Biol. 4, 63

    Article  Google Scholar 

  • Taylor, M. G., (1966) The input impedance of an assembly of randomly branching elastic tubes.Biophys. J 6, 29

    Article  Google Scholar 

  • Westerhof, N. andNoordergraf, A., (1970) Arterial viscoelasticity: a generalised model.J. Biomech. 3, 357

    Article  Google Scholar 

  • Womersley, J. R. (1957) The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Centre, Technical Report. WADC-TR56-614

  • Young, D. F., Cholvin, N. R., Roth, A. C. (1975): Pressure drop across artificially induced stenosis in the femoral arteries of dogs.Circ. Res. 36, 735.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avolio, A.P. Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18, 709–718 (1980). https://doi.org/10.1007/BF02441895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441895

Keywords

Navigation