Skip to main content
Log in

Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The parameters of a simple model (r-L-C-R) of the systemic circulation are estimated from aortic root pressure and flow, which are either simulated by a complex model of the systemic circulation or measured in dogs. This model contains one additional parameter (inductance L) as compared with the r-C-R model proposed by Westerhof; it allows for a better representation of the input impedance of the complex model and of the systemic circulation in dog, resulting in meaningful values for the parameters r, C, R. Because there is a good relation between C and the sum of the compliances of the complex model, and because C varies in the direction of the expected changes in compliance following angiotensin and sodium nitroprusside administration in dogs, C appears to be a valid estimate of the total systemic arterial compliance. The good relation between r and the characteristic impedance in the complex model or in the upper thoracic aorta of the dog indicates that r is a good measure of the characteristic impedance. The r-L-C-R model therefore appears to provide a better characterisation of the left ventricular afterload than the r-C-R model. The identification of this r-L-C-R model also permits a more convenient quantification of the afterload than the classical computation of input impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beneken, J. E. W. (1972) Some computer models in cardiovascular research.In Cardiovasc. fluid dynamics (Ed.Bergel, D. H.) 173–223.

  • Bergel, D. H. (1961) The static elastic properties of the arterial wall.J. Physiol.,156, 445–457.

    Google Scholar 

  • Bourgeois, M. J., Gilbert, B. K., Donald, D. E. andWood, E. H. (1974) Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance.Circulation Res.,35, 56–66.

    Google Scholar 

  • Bourgeois, M. J., Gilbert, B. K., von Bernuth, G. andWood, E. H. (1976) Continuous determination of beat-to-beat stroke volume from aortic pressure pulses in dog.Circulation Res.,39, 15–24.

    Google Scholar 

  • Box, M. J., Davies, D. andSwann, W. H. (1964)Non linear optimisation techniques. Oliver and Boyd, D., Edinburgh, Great Britain.

    Google Scholar 

  • Chang, P. P. (1973) Model based parameter estimation of the canine systemic circulation system. Ph.D. Dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Chang, P. P., Matson, G. L., Kendrick, J. E. andRideout, V. C. (1974) Parameter estimation in the canine cardiovascular system.IEEE,19, 927–931.

    Google Scholar 

  • Chatterjee, J. andSwann, H. J. C. (1973) Hemodynamic profile of acute myocardial infarction. InMyocardial infarction (Ed.Corday, E. andSwann, H. J. C.), Williams and Wilkins Co., Baltimore, 51–61.

    Google Scholar 

  • Cox, R. H. (1975) Pressure dependance of the mechanical properties of arteriesin vivo.J. Physiol.,229, 1371–1375.

    Google Scholar 

  • Deswysen, B. (1977a) Parameter estimation of a simple model of the left ventricle and of the systemic vascular bed, with particular attention to the physical meaning of the left ventricular parameters.IEEE Trans.,BME-24, 29–38.

    Google Scholar 

  • Deswysen, B. (1977b) Identification d'un modèle simple du système cardiovasculaire: évaluation des changements de charge et de contractilité. Doctoral Thesis, University of Louvain, Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Frank, O. (1899) Die grundform des arteriellen puls.Z. Biol.,37, 483–526.

    Google Scholar 

  • Gillespie, J. S. andRae, R. M. Constrictor and compliance responses of some arteries to nerve or drug stimulation.J. Physiol.,223, 109–130.

  • Goldwyn, R. M. andWatt, T. B. (1967) Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties.IEEE Trans.,BME-14 11–17.

    Google Scholar 

  • Landes, G. (1943) Einige untersuchungen an elektrischen analogieschaltungen zum kreitslaufsystem.Z. Biol.,101, 418–429.

    Google Scholar 

  • Milnor, W. R. (1975) Arterial impedance as ventricular afterload.Circulation Res.,36, 565–570.

    Google Scholar 

  • Nichols, W. W., Conti, C. R., Walker, W. E. andMilnor, W. R. (1977) Input impedance of the systemic circulation in man.Circulation Res.,40, 451–458.

    Google Scholar 

  • O'Rourke, R. A., Pegram, B. andBishop, V. S. (1972) Variable effect of angiotensin infusion on left ventricular function.Cardiovasc. Res.,6, 240–247.

    Article  Google Scholar 

  • Palmer, R. F. andLasseter, K. C. (1975) Drug therapy sodium nitroprusside.New Engl. J. of Medicine,6, 294–297.

    Article  Google Scholar 

  • Piene, H. (1976) Some physical properties of the pulmonary arterial bed deduced from pulsatile arterial flow and pressure.Acta Physiol. Scand.,98, 295–306.

    Article  Google Scholar 

  • Remington, J. W. (1963) The physiology of the aorta and major arteries. InHandbook of physiology, circulation, Vol. II (Eds.Hamilton, W. F. andDow, P.), American Physiological Society, Washington D.C., USA, 799–836.

    Google Scholar 

  • Rideout, V. C. andDick, D. E. (1967) Difference-differential equations for fluid flow in distensible tubes.IEEE Trans.,BME-14, 171–177.

    Google Scholar 

  • Sims, J. B. (1972) Estimation of arterial system parameters from dynamic records.Comput. & Biomed. Res.,5, 131–147.

    Article  MathSciNet  Google Scholar 

  • Spencer, M. P. andDenison, A. B. (1963) Pulsatile blood flow in the vascular system. InHandbook of physiology, circulation, Vol. II (Eds.Hamilton, W. F. andDow, P.), American Physiological Society, Washington D.C., USA, 839–864.

    Google Scholar 

  • Suga, H., Sagawa, K. andShoukas, A. A. (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio.Circulation Res.,32, 314–322.

    Google Scholar 

  • Taylor, M. G. (1964) Wave travel in arteries and the design of the cardiovascular system. InPulsatile blood flow (Ed.Attinger, E. O.), McGraw-Hill, 343–367.

  • Taylor, M. G. (1965) Wave travel in a non-uniform transmission line, in relation to pulses in arteries.Phys. Med. & Biol.,10, 539–550.

    Article  Google Scholar 

  • Westerhof, N. (1968) Analog studies of human systemic arterial hemodynamics. Ph.D. thesis, University of Pennsylvania, Philadelphia, 193.

    Google Scholar 

  • Westerhof, N., Elzinga, G. andVan den Bos, G. C. (1973) Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree.Med. & Biol. Eng., 710–722.

  • Westerhof, N., Elizinga, G., Sipkema, P. andVan den Bos, G. C. (1977) Quantitative analysis of the arterial system and heart by means of pressure-flow relations. InCardiovascular flow dynamics and measurements (Ed.Hwang, N. H. C. andNormann, N. A.), Baltimere, 403–438.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deswysen, B., Charlier, A.A. & Gevers, M. Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med. Biol. Eng. Comput. 18, 153–166 (1980). https://doi.org/10.1007/BF02443290

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443290

Keywords

Navigation