Skip to main content
Log in

Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study was performed to elucidate the effects of cardiac contraction on coronary pressure-flow relations. On the basis of the waterfall mechanism, a lumped model of the coronary arterial system is presented consisting of a proximal (epicardial) compliance, a coronary resistance, and an intramyocardial compliance. A “back”-pressure, assumed to be proportional (constant k) to left ventricular pressure, impedes flow. From steady-state measurements of circumflex coronary artery flow and inflow pressure, together with left ventricular pressure, the values of the three model parameters and the constant k have been estimated. In the control condition proximal compliance is found to be 1.7×10−12 m4s2kg−1, intramyocardial compliance 110×10−12m4s2kg−1, and resistance 7.5×109kgm−4s−1. The proportionality constant k is close to unity. Effects of changes in left ventricular pressure and inflow pressure and the effect of vasoactive drugs on the parameters are also investigated. Changes in coronary resistance are always opposite to changes in intramyocardial compliance. Sensitivity analysis showed that epicardial compliance plays its major role during isovolumic contraction and relaxation; resistance plays a role throughout the cardiac cycle but is more important in diastole than in systole, whereas intramyocardial compliance plays a role in systole and in early diastole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armour, J.A. and W.C. Randall. Canine left ventricular intramyocardial pressures.Am. J. Physiol. 220:1833–1839, 1971.

    CAS  PubMed  Google Scholar 

  2. Arts, T., R.T.I. Kruger, W. van Gerven, J.A.C. Lambregts, and R.S. Reneman. Propagation velocity and reflection of pressure waves in the canine coronary artery.Am. J. Physiol. 237:H469-H474, 1979.

    CAS  PubMed  Google Scholar 

  3. Bellamy, R.F., Calculation of coronary vascular resistance.Cardiovasc. Res. 14:261–269, 1980.

    CAS  PubMed  Google Scholar 

  4. Brandi, G. and M. McGregor. Intramural pressure in the left ventricle of the dog.Cardiovasc. Res. 3:472–475, 1969.

    CAS  PubMed  Google Scholar 

  5. Burattini, R. and G. Gnudi. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results.Med. Biol. Eng. Comput. 20:134–144, 1982.

    CAS  PubMed  Google Scholar 

  6. Canty, J.M., F.J. Klocke, and R.E. Mates. Coronary capacitance calculated from in vivo measurement of diastolic coronary input impedance.Fed. Proc. 40:1097, 1982.

    Google Scholar 

  7. Canty, J.M., R.E. Mates, and F.J. Klocke. Rapid determination of capacitance-free pressure-flow relationships during single diastoles.Fed. Proc. 42:1092, 1983.

    Google Scholar 

  8. Collatz, L.The Numerical Treatment of Differential Equations. Berlin: Springer-Verlag, 1966, pp. 78–97.

    Google Scholar 

  9. Dole, W.P. and V.S. Bishop. Influence of autoregulation and capacitance on diastolic coronary artery pressure-flow relationships in the dog.Circ. Res. 51:261–270, 1982.

    CAS  PubMed  Google Scholar 

  10. Douglas, J.E. and J.C. Greenfield. Epicardial coronary artery compliance in the dog.Circ. Res. 27:921–929, 1970.

    CAS  PubMed  Google Scholar 

  11. Downey, J.M. and E.S. Kirk. Inhibition of coronary blood flow by a vascular waterfall mechanism.Circ. Res. 36:753–760, 1975.

    CAS  PubMed  Google Scholar 

  12. Downey, J.M. Comments on flow through collapsible tubes at low Reynolds numbers. Letter.Circ. Res. 48:299–301, 1981.

    CAS  Google Scholar 

  13. Eng, C. and E.S. Kirk. The arterial component of the coronary capacitance.Circulation 68(Suppl II): [Abstract 1232], 1983.

  14. Hamlin, R.L., M.J. Levesque, and M.D. Kittleson. Intramyocardial pressure and distribution of coronary blood flow during systole and diastole in the horse.Cardiovasc. Res. 16:256–262, 1982.

    CAS  PubMed  Google Scholar 

  15. Johnson, J.R. and J.R. DiPalma. Intramyocardial pressure and its relation to aortic blood pressure.Am. J. Physiol. 125:234–243, 1939.

    Google Scholar 

  16. Kamm, R.D. and A.H. Shapiro. Unsteady flow in a collapsible tube subjected to external pressure or body forces.J. Fluid. Mech. 95:1–78, 1979.

    Google Scholar 

  17. Kirk, E.S. and C.R. Honig. An experimental and theoretical analysis of myocardial tissue pressure.Am. J. Physiol. 207:661–668, 1964.

    CAS  PubMed  Google Scholar 

  18. Lewi, P.J. and W.K.A. Schaper. The estimation of coronary volume elasticity in the beating heart of the dog.Pflügers Arch. 325:191–198, 1971.

    Article  CAS  PubMed  Google Scholar 

  19. Marble, A.E., C.M. McIntyre, R. Hastings-James, and C.W. Hor. A comparison of digital algorithms used in computing the derivative of left ventricular pressure.IEEE Trans. Biomed. Eng. 28:524–529, 1981.

    CAS  PubMed  Google Scholar 

  20. Morgenstern, C., U. Höljes, G. Arnold, and W. Lochner. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle.Pflügers Arch. 340:101–111, 1973.

    Article  CAS  PubMed  Google Scholar 

  21. Paulsen, R.A., J.W. Clark Jr., P.H. Murphy and J.A. Burdine. Sensitivity analysis and imposed identification of a systemic arterial model.IEEE Trans. Biomed. Eng. 29:164–177, 1982.

    PubMed  Google Scholar 

  22. Pedley, T.J.The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980, pp. 301–368.

    Google Scholar 

  23. Permutt, S. and R.I. Riley. Hemodynamics of collapsible vessles with tone: The vascular waterfall.J. Appl. Physiol. 18:924–932, 1963.

    CAS  PubMed  Google Scholar 

  24. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives.Computer J. 65:735–740, 1964.

    Google Scholar 

  25. Rabiner, L.R. and B. Gold.Theory and Application of Digital Signal Processing. Englewood Cliffs N.J.: Prentice Hall, 1975, pp. 75–294.

    Google Scholar 

  26. Spaan, J.A.E., N.P.W. Breuls, and J.D. Laird. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog.Circ. Res. 49:584–593, 1981.

    CAS  PubMed  Google Scholar 

  27. Stein, P.D., M. Marzilli, N.S. Hani, and T. Lee. Systolic and diastolic pressure gradients within the left ventricular wall.Am. J. Physiol. 238:H625-H630, 1980.

    CAS  PubMed  Google Scholar 

  28. Westerhof, N., P. Sipkema, and G.A. van Huis. Coronary pressure flow relations and the vascular waterfall.Cardiovasc. Res. 17:162–169, 1983.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burattini, R., Sipkema, P., van Huis, G.A. et al. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann Biomed Eng 13, 385–404 (1985). https://doi.org/10.1007/BF02407768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407768

Keywords

Navigation