Skip to main content
Log in

Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

The input impedance of the systemic arterial tree of the dog has been computed by Fourier analysis. It was shown that a distance between pressure and flow transducers of less than 2 cm results in appreciable errors which manifest themselves mainly in the phase of the input impedance. The input impedance for controls, occlusions at various locations in the aorta, and an increase and decrease of peripheral resistance were studied. For the same experiments, the total arterial compliance was calculated from the peripheral resistance of the diastolic aortic-pressure curve. The characterstic impedance of the ascending aorta was also estimated. The impedance in the control situation may be modelled by means of a 3-element Windkessel consisting of a peripheral resistance and (total) arterial compliance, together with a resistance equal to the characteristic impedance of the aorta. The occlusions of the aorta show that blockage at (and beyond) the trifurcation do not result in a detectable change in input impedance, except for a slight increase of the peripheral resistance. The more proximal an aortic occlusion, the more effect it has on the pattern of the input impedance. When the aorta is occluded at the diphragm, or higher, the single (uniform) tube appears to be a much better model than the Windkessel. Occlusion of one or both carotid arteries increases the mean pressure; consequently not only the peripheral resistance increases but also the total arterial compliance decreases. The Windkessel with increased peripheral resitance and decreased compliance is again a good model. After a sudden release of occlusion of the aorta, the arterial system has a low peripheral resistance and may also be modelled by the Windkessel.

Sommaire

L'impédance d'entrée du réseau général artériel du chien a été estimée par analyse de Fourier On a montré qu'une distance de moins de 2 cm entre transducteurs de pression et d'écoulement résulte en erreurs appréciables qui se manifestent principalement par la phase de l'impédance d'entrée. L'impédance d'entrée des contrôles, les occlusions à divers emplacements de l'aorte et l'augmentation et la baisse de la résistance périphérique furent étudiés. Pour les mêmes expériences, la complaisance artérielle totale fut calculée à partir de la résistance périphérique de la courbe de pression aortique diastolique. L'impédance caractéristique de l'aorte ascendante fut aussi estimée. L'impédance dans la position de contrôle péut aussi être modelée à l'aide du Windkessel à 3 élements consistant d'une résistance péripherique et de la complaisance artérielle (totale), ainsi que d'une résistance égale à l'impédance caractéristique de l'aorte. Les occlusions de l'aorte montrent qu'une obstruction de la trifurcation (et au delà) n'occasionne pas de changement d'impédance d'entrée détectable, sauf une légère augmentation de la résistance périphérique. Plus l'occlusion aortique est proximale, plus l'effet sur la forme de l'impédance d'entrée est important. Lorsque l'aorte est occluse au diaphragme ou plus haut, le tube unique (uniforme) parait être un modèle beaucoup meilleur que le Windkessel. L'occlusion d'une ou des deux artères carotides augmente la pression moyenne, en conséquence, non seulement la résistance périphérique augmente mais la complaisance artérielle totale diminue. Le Windkessel avec résistance périphérique supérieure et complaisance inférieure est à nouveau un bon modèle. Après retait brusque d'une occlusion de l'aorte, le système artétiel prend une résistance périphérique faible et peut aussi être modelé par le Windkessel.

Zusammenfassung

Die Eingangsimpedanz des Arteriensystems des Hundes wurde durch eine Fourier Analyse berechnet. Es wurde gezeigt, dass ein Abstand zwischen Druck-und Strömungsumwandlern von weniger als 2 cm merkliche Fehler zur Folge hatte, welche sich hauptsächlich in der Phase der Eingangsimpedanz zeigten. Die Eingangsimpedanz für Kontrolle, Verstopfung an verschiedenen Stellen der Aorta und Zu- und Abnahme des peripheren Widerstandes wurden studiert. Für dieselben Experimente wurde der totale arterielle Federungs-Widerstand aus dem peripheren Widerstand der diastolischen aortischen Druckkurve kalkuliert. Die charakteristische Impedanz der aufsteigenden Aorta wurde auch geschätzt. Die Impedanz zur Kontrolle kann durch einen 3-Elemente-Windkessel, bestehend aus peripherem Widerstand und (totaler) arterieller Federung, sowie einem der charakteristischen Impedanz der Aorta entsprechenden Widerstand dargestellt werden. Verstopfungen der Aorta zeigen, dass eine Blockung an der Trifurkation (und darüberhinaus) keine wahrnehmbare Veränderung der Eingangsimpedanz hervorruft, ausser einer leichten Zunahme des peripheren Widerstands. Je proximaler eine Aorta-Blockung ist, desto mehr Effekt hat sie auf die Art der Eingangsimpedanz. Befindet sich die Verstopfung an der Scheidewand oder höher, so scheint die einfache Röhre ein viel besseres Modell als der Windkessel zu sein. Verstopfung einer oder beider Arteria Carotis erhöht den mittleren Druck; folglich erhöht sich der periphere Widerstand, während die totale Arterien-Federung abnimmt. Der Windkessel mit erhöhtem peripherem Widerstand und verringerter Federung ist wieder ein gutes Modell. Nach dem plötzlichen Auflösen der Blockung in der Aorta hat das Arteriensystem einen niedrigen peripheren Widerstand und kann auch durch den Windkessel dargestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, F. L. (1971) Fourier analysis of left ventricular performance.Circ. Res. 28, 119–135.

    Google Scholar 

  • Attinger, E. O., Anné, A. andMcDonald, D. A. (1966a) Use of Fourier series for the analysis of biological systems.Biophys. J. 6, 291–304.

    Google Scholar 

  • Attinger, E. O., Sugawara, H., Navarro, A., Ricetto, A. andMartin, R. (1966b) Pressure-flow relations in dog arteries.Circ. Res. 19, 230–245.

    Google Scholar 

  • Bergel, D. H. andMilnor, W. R. (1965) Pulmonary vascular impedance in the dog.Circ. Res. 16, 401–415.

    Google Scholar 

  • Broemser, Ph. (1932) Betrag zur Windkessel theorie des Kreislaufs.Z. Biol. 93, 149–163.

    Google Scholar 

  • Broemser, Ph. andRanke, O. F. (1930) Uber die Messung des Schlagvolumes des Herzens auf unblutigem Weg.Z. Biol. 90, 467–507.

    Google Scholar 

  • Cox, R. H. (1971) Determination of the true phase velocity of arterial pressure wavesin vivo.Circ. Res. 29, 407–418.

    Google Scholar 

  • Dick, D. E., Kendrick, J. E., Matson, G. L. andRideout, V. C. (1968) Measurement of nonlinearity in the arterial system of the dog by a new method.Circ. Res. 22, 101–112.

    Google Scholar 

  • Elkins, R. C. andMilnor, W. R. (1971) Pulmonary vascular response to exercise in the dog.Circ. Res. 29, 591–599.

    Google Scholar 

  • Frank, O. (1899) Die Grundform des Arteriellen Puls.Z. Biol. 37, 483–526.

    Google Scholar 

  • Gabe, I. T., Karnell, J., Porjé I. G. andRudewald, B. (1964) The measurement of input impedance and apparent phase velocity in the human aorta.Acta. Physiol. Scand. 61, 73–84.

    Google Scholar 

  • Goedhard, W. J. A. (1971) Visco-elastische eigen-schappen van de arteriewand. Ph.D. thesis, Free University, Amsterdam.

    Google Scholar 

  • Guyton, A. C. (1966)Textbook of Medical Physiology. pp 280–291. Saunders, Phil. USA.

    Google Scholar 

  • McDonald, D. A. (1960)Blood flow in arteires. Arnold, London.

    Google Scholar 

  • McDonald, D. A. (1964) Frequency dependence of vascular impedance. In:Pulsatile blood flow. Ed.E. O. Attinger, pp 115–134. McGraw-Hill, New York.

    Google Scholar 

  • McDonald, D. A. andTaylor, M. C. (1959) The hydrodynamics of the arterial circulation.Progr. Biophys. Biophys.Chem. 9, 105–173.

    Google Scholar 

  • Milnor, W. R., Bergel, D. H. andBargainer, J. D. (1966) Hydraulic power associated with pulmonary blood flow and its relation to heart rate.Circ. Res. 19, 467–480.

    Google Scholar 

  • Milnor, W. R., Conti, C. R., Lewis, K. B. andO'Rourke, M. F. (1969) Pulmonary arterial pulse wave velocity and impedance in man.Circ. Res. 25, 637–648.

    Google Scholar 

  • Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J. Jun., Braunwald, E. andShillingford, J. P. (1970) Pressure-flow relationships and vascular impedance in man.Cardiovasc. Res. 4, 405–417.

    Google Scholar 

  • Nichols, W. W. (1970) Cardiac output derived from the aortic pressure. Ph.D. thesis, University of Alabama, Birmingham, Ala., USA.

    Google Scholar 

  • Nichols, W. W. andMcDonald, D. A. (1972) Wave velocity in the proximal aorta.Med. Biol. Eng. 10, 327–335.

    Article  Google Scholar 

  • Noble, M. I. M., Gabe, I. T., Trenchard, D. andGuz, A. (1967) Blood pressure and flow in the ascending aorta of conscious dogs.Cardiovasc. Res. 1, 9–20.

    Google Scholar 

  • O'Rourke, M. F. (1970) Arterial hemodynamics in hypertension.Circ. Res. 26, Suppl. 2, 123–133.

    Google Scholar 

  • O'Rourke, M. F. (1968) Impact pressure, lateral pressure, and impedance in the proximal aorta and pulmonary artery.J. Appl. Physiol. 25, 533–541.

    Google Scholar 

  • O'Rourke, M. F. (1967a) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system.J. Appl. Physiol. 23, 139–149.

    Google Scholar 

  • O'Rourke, M. F. (1967b) Steady and pulsatile energy losses in the systemic arterial circulation under normal conditions and in simulated arterial disease.Cardiovasc. Res. 1, 313–326.

    Article  Google Scholar 

  • O'Rourke, M. F. andCartmill, T. B. (1971) Influence of aortic coarctation on pulsatile hemodynamics in the proximal aorta.Circulation 44, 281–292.

    Google Scholar 

  • O'Rourke, M. F. andTaylor, M. G. (1967) Input impedance of the systemic circulation.Circ. Res. 20, 365–380.

    Google Scholar 

  • O'Rourke, M. F. andTaylor, M. G. (1966) Vascular impedance of the femoral bed.Circ. Res. 18, 126–139.

    Google Scholar 

  • Patel, D. J., Austen, W. G. andGreenfield, J. C. (1964) Impedance of certain large blood vessels in man.Ann. NY Acad. Sci. 115, 1129–1139.

    Google Scholar 

  • Patel, D. J., de Freitas, F. M. andFry, D. L. (1963) Hydraulic input impedance to aorta and pulmonary artery in dogs.J. Appl. Physiol. 18, 134–140.

    Google Scholar 

  • Patel, D. J., Greenfield, J. C., Austen, W. G., Morrow, A. G. andFry, D. L. (1965a) Pressure-flow relationships in the ascending aorta and femoral artery of man.J. Appl. Physiol. 20, 459–463.

    Google Scholar 

  • Patel, D. J., Mason, D. T., Ross, J. andBraunwald, E. (1965b) Harmonic analysis of pressure pulses obtained from the heart and great vessels of man.Amer. Heart J. 69, 785–794.

    Article  Google Scholar 

  • Pollack, G. H., Reddy, R. V. andNoordergraaf, A. (1968) Input impedance, wave travel, and reflections in the human pulmonary arterial tree: Studies using an electrical analog.IEEE Trans. Biomed. Eng. 15, 151–164.

    Google Scholar 

  • Randall, J. E. (1958) Statistical properties of pulsatile pressure and flow in the femoral artery of the dog.Circ. Res. 6, 689–698.

    Google Scholar 

  • Reuben, S. R. (1971) Compliance of the human pulmonary arterial system in disease.Circ. Res. 29, 40–50.

    Google Scholar 

  • Reuben, S. R., Gersh, B. J., Swadling, J. P. andLee, G. de J. (1970) Measurement of pulmonary arterial distensibility in the dog.Cardiovasc. Res. 4, 473–481.

    Google Scholar 

  • Reuben, S. R., Swadling, J. P., Gersh, B. J. andLee, G. de J. (1971) Impedance and transmission properties of the pulmonary arterial system.Cardiovasc. Res. 5, 1–9.

    Google Scholar 

  • Snyder, M. F., Rideout, V. C. andHillestad, R. J. (1968) Computer modelling of the human systemic arterial tree.J. Biomech. 1, 341–343.

    Article  Google Scholar 

  • Taylor, M. G. (1966a) The input impedance of an assembly of randomly branching elastic tubes.Biophys. J. 6, 29–51.

    Article  Google Scholar 

  • Taylor, M. G. (1966b) Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system.Circ. Res. 18, 585–595.

    Google Scholar 

  • Taylor, M. G. (1965) Wave travel in a non-uniform transmission line in relation to pulses in arteries.Phys. Med. Biol. 10, 539–550.

    Article  Google Scholar 

  • Westerhof, N. (1968) Analog studies of human systemic arterial hemodynamics. Ph.D. thesis, University of Pennsylvania, USA.

    Google Scholar 

  • Westerhof, N., Bosman, F., de Vries, C. J. andNoordergraaf, A. (1969) Analog studies of the human systemic arterial tree.J. Biomech. 2, 121–143.

    Article  Google Scholar 

  • Westerhof, N. andGessner, U. (1965) Comparison of an electrical model of the human systemic arterial tree with measurements in humans.Proc. Ann. Conf. Eng. Med. Biol., Philadelphia, USA.

  • Westerhof, N., Elzinga, G. andSipkema, P. (1971) An artificial arterial system for pumping hearts.J. Appl. Physiol. 31, 776–781.

    Google Scholar 

  • Westerhof, N. andNoordergraaf, A. (1970a) Arterial visco-elasticity: A generalized model.J. Biomech. 3, 357–379.

    Article  Google Scholar 

  • Westerhof, N. andNoordergraaf, A. (1970b) Errors in the measurement of hydraulic input impedance.J. Biomech. 3, 351–356.

    Article  Google Scholar 

  • Westerhof, N. Sipkema, P., Van den Bos, G. C. andElzinga, G. (1972) Forward and backward waves in the arterial system.Cardiovasc. Res. 6, 648–656.

    Google Scholar 

  • Wetterer, E. andKenner, Th. (1968) Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Wezler, K. andBöger, A. (1936a) Die Begrenzung des arteriellen Windkessels beim Menschen.Z. Kreisl.-Forsch. 28, 391–408.

    Google Scholar 

  • Wezler, K. andBöger, A. (1936b) Der Einfluss der Gefassmuskulatur auf den arteriellen Windkessel.Z. Kreisl.-Forsch. 28, 759–784.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerhof, N., Elzinga, G. & Van den Bos, G.C. Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree. Med. & biol. Engng. 11, 710–723 (1973). https://doi.org/10.1007/BF02478659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02478659

Keywords

Navigation