Synthetic Seeds of Wild Beet: Basic Concepts and Related Methodologies

  • Saber Delpasand Khabbazi
  • Canan Yüksel Özmen
  • Ali ErgülEmail author


Synthetic seeds are artificially encapsulated propagules that mimic true seeds in agriculture. Although a variety of plant materials, such as shoot tips, axillary buds, callus, micro cuttings, and protocorm-like bodies, are used in the production of synthetic seeds, somatic embryos are the most widely used explants in the production of these seeds. Synthetic seeds compete with traditional approaches to preserve the germplasm of threatened plant species. The resulting progenies are the true clones of the main plant, thus preserving the intactness of the genetic background. Due to poor germination and low seed amount, wild Beta species are exposed to the risk of extinction. Wild relatives of Beta have agronomically important properties such as resistance to diseases and abiotic stresses. Numerous attempts have been made to give these traits to sugar beet crop through conventional breeding methods. Despite the importance of synthetic seed for wild beets, it has not yet been investigated. The production of synthetic seeds ensures the conservation and availability of wild germplasm of the genus Beta for cytogenetic and breeding studies.


Artificial seeds Biotic and abiotic stress Genus Beta Germplasm conservation Resistance genes 


  1. Abe J, Tsuda C (1987) Genetic analysis for isozyme variation in the section Vulgares, genus Beta. Jpn J Breed 37(3):253–261CrossRefGoogle Scholar
  2. Ahmad N, Anis M (2010) Direct plant regeneration from encapsulated nodal segments of Vitex negundo. Biol Plant 54:748–752Google Scholar
  3. Ahmad N, Faisal M, Fatima N et al (2012) Encapsulation of microcuttings for propagation and short-term preservation in Ruta graveolens L.: a plant with high medicinal value. Acta Physiol Plant 34:2303–2310Google Scholar
  4. Alatar A, Faisal M (2012) Encapsulation of Rauvolfia tetraphylla microshoots as artificial seeds and evaluation of genetic fidelity using RAPD and ISSR markers. J Med Plants Res 6:1367–1374CrossRefGoogle Scholar
  5. Alcaraz G, Geuter T, Laillet G et al (1998) Sugar beet pollen biology. In: Proceedings of 61th IIRB congress, Brussels, pp 393–399Google Scholar
  6. Alibert B, Sellier H, Souvré A (2003) Flux de gènes entre la betteravesucrière GM et lesbetteravesrudéralesdansles conditions de la production de semencesau champ. In: Proceedings of 66th IIRB congress, BrusselsGoogle Scholar
  7. Altınok HH (2012) The disease prevalence and severity of Cercospora leaf spot in sugar beet cultivations in Kayseri. Derim 29(2):33–45Google Scholar
  8. Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444Google Scholar
  9. Attree SM, Pomeroy MK, Fowke LC (1994) Production of vigorous, desiccation tolerant white spruce (Picea-glauca (moench) voss) synthetic seeds in a bioreactor. Plant Cell Rep 13:601–606Google Scholar
  10. Bapat VA, Rao PS (1990) In vivo growth of encapsulated axillary buds of mulberry (Morus-indica L.). Plant Cell Tissue Organ Cult 20:69–70CrossRefGoogle Scholar
  11. Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (Mulberry) by encapsulated shoot buds. Plant Cell Rep 1987(6):393–395PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bewley JD, Black M (1985) Seeds: physiology of development and germination. Plenum, New York, p 367CrossRefGoogle Scholar
  13. Biancardi E, De Biaggi M (1979) Beta maritima L. in the Po Delta. In: Atti Convegno Tecnico Internazionale sulla Bieticoltura in Commemorazione di Ottavio Munerati. ISCI, Rovigo, pp 183–185Google Scholar
  14. Biancardi E, McGrath JM, Panella LW et al (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crop. Springer, New York, pp 173–219CrossRefGoogle Scholar
  15. Biancardi E, Panella LW et al (2012) Beta maritima: the origin of beets. Springer, New YorkCrossRefGoogle Scholar
  16. Boughey CL (1981) Evolutionary and taxonomic studies on wild and cultivated beets. PhD Thesis, University of BirminghamGoogle Scholar
  17. Capuano G, Piccioni E, Standardi A (1998) Effect of different treatments on the conversion of M.26 apple rootstock synthetic seeds obtained from encapsulated apical and axillary micropropagated buds. J Hortic Sci Biotechnol 73:299–305CrossRefGoogle Scholar
  18. Cartes P, Castellanos H, Ríos D et al (2009) Encapsulated somatic embryos and zygotic embryos for obtaining artificial seeds of rauli-beech (Nothofagus alpina (Poepp. and Endl.) oerst.). Chil J Agric Res 69:112–118Google Scholar
  19. Castellanos H, Sánchez-Olate M, Ríos YD (2004) Embriogénesis somática recurrente en raulí (Nothofagus alpine (Poepp. et Endl.) Oerst). Segundo Congreso Chileno de Ciencias Forestales, Valdivia, Chile. 10–12 de noviembre. Universidad Austral de Chile, Valdivia, p 36Google Scholar
  20. Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb, a timber-yielding leguminous tree species. J Plant Physiol 161:237–243PubMedCrossRefPubMedCentralGoogle Scholar
  21. Coons GH (1954) The wild species of Beta. Proc Am Soc Sugar Beet Technol 8:142–147Google Scholar
  22. Coons GH (1975) Interspecific hybrids between Beta vulgaris L. and the wild species of Beta. J Am Soc Sugar Beet Technol 18:281–306CrossRefGoogle Scholar
  23. Cuguen J, Arnaud JF, Delescluse M et al (2005) Gene flow within the Beta species complex: genetic diversity of weed and wild sea beet populations within the French sugar beet production area. Adv Sugar Beet Res 6:103–115Google Scholar
  24. Daud M, Taha MZ, Hasbullah AZ (2008) Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl. (African Violet). J Appl Sci 8:4662–4667Google Scholar
  25. De Bock TSM (1986) The genus Beta: domestication, taxonomy and interspecific hybridization for plant breeding. Acta Hortic 182:335–343CrossRefGoogle Scholar
  26. Doney DL (1993) Broadening the genetic base of sugarbeet. J Sugar Beet Res 30:209–220CrossRefGoogle Scholar
  27. Doney DL, Whitney ED (1990) Genetic enhancement in Beta for disease resistance using wild relatives: a strong case for the value of genetic conservation. Econ Bot 44:445–451CrossRefGoogle Scholar
  28. Drew RLK (1979) A cheap, simple apparatus for growing large batches of plant tissue in submerged liquid culture plant. Sci Lett 17:227–236CrossRefGoogle Scholar
  29. Elliott MC, Weston GD (1993) Biology and physiology of the sugar beet plant. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman and Hall, London, pp 37–66CrossRefGoogle Scholar
  30. Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm: current research progress and application. In: Proceedings of an international workshop. International Plant Genetic Resources Institute (IPGRI), Tsukuba, JapanGoogle Scholar
  31. Ergül A, Khabbazi SD, Oğuz MÇ et al (2018) In vitro multiplication of wild relatives in genus Beta conserves the invaluable threatened germplasms. Plant Cell Tissue Organ Cult:1–7Google Scholar
  32. Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. F.) Merrill., an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354CrossRefGoogle Scholar
  33. Ford-Lloyd BV (2005) Sources of genetic variation, genus Beta. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, pp 25–33Google Scholar
  34. Frese L (2010) Conservation and access to sugarbeet germplasm. Sugar Technol 12(3–4):207–219CrossRefGoogle Scholar
  35. Frese L, Desprez B, Ziegler D (2001) Potential of genetic resources and breeding strategies for base-broadening in Beta. Broadening the genetic base of crop production. IPGRI/FAO, Rome, pp 295–309Google Scholar
  36. Ganapathi TR, Suprasanna P, Bapat VA et al (1992) Propagation of banana through encapsulated shoot tips. Plant Cell Rep 11:571–575CrossRefGoogle Scholar
  37. Gantait S, Kundu S, Ali N et al (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37(5):98CrossRefGoogle Scholar
  38. Gidner S, Lennefors BL, Nilsson NO et al (2005) QTL mapping of BNYVV resistance from the WB41 source in sugar beet. Genome 48:279–285PubMedCrossRefGoogle Scholar
  39. Grimmer MK, Kraft T, Francis SA et al (2008a) QTL mapping of BNYVV resistance from the WB258 source in sugar beet. Plant Breed 127(6):650–652CrossRefGoogle Scholar
  40. Grimmer MK, Bean KMR, Qi A et al (2008b) The action of three Beet yellows virus resistance QTLs depends on alleles at a novel genetic locus that controls symptom development. Plant Breed 127(4):391–397CrossRefGoogle Scholar
  41. Heijbroek W, McFarlane JS, Doney DL (1977) Breeding for tolerance to beet-cyst eelworm Heterodera schachtii Schm. in sugarbeet. Euphytica 26(3):557–564CrossRefGoogle Scholar
  42. Heijbroek W, Roelands AJ, De Jong JH et al (1988) Sugar beets homozygous for resistance to beet cyst nematode (Heterodera schachtii Schm.), developed from monosomic additions of Beta procumbens to B. vulgaris. Euphytica 38:121–131CrossRefGoogle Scholar
  43. Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana x C. citriodora. Acta Physiol Plant 34:117–128CrossRefGoogle Scholar
  44. Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell Tissue Organ Cult 109:341–352CrossRefGoogle Scholar
  45. Ikhlaq M, Hafiz IA, Micheli M et al (2010) In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. Afr J Biotechnol 9:5712–5721Google Scholar
  46. Janick J, Kim YH, Kitto S et al (1993) Desiccated synthetic seed. In: Redenbaugh K (ed) Synseeds. CRC, Boca Raton, FL, pp 11–33Google Scholar
  47. Jassem B (1992) Species relationship in the genus Beta as revealed by crossing experiments. In: International beta genetic resources network. In: Report on the 2nd international beta genetic resources workshop held at the Institute for Crop Science and Plant Breeding, Braunschweig, Germany, 24–28 June 1991. International Crop Network Series No, vol 7, pp 55–61Google Scholar
  48. Jung C, Wricke G (1987) Selection of diploid nematode-resistant sugar beet from monosomic addition lines. Plant Breed 98(3):205–214CrossRefGoogle Scholar
  49. Jung SJ, Yoon ES, Jeong JH et al (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia 36:9–19CrossRefGoogle Scholar
  51. Kavyashree R, Gayatri MC, Revanasiddaiah HM (2006) Propagation of mulberry variety-S54 by synseeds of axillary bud. Plant Cell Tissue Organ Cult 84:245–249CrossRefGoogle Scholar
  52. Keskin B (1964) Polymyxa betae n. sp., einParasit in den Wurzeln von Beta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrübe. Arch Microbiol 49(4):348–374Google Scholar
  53. Kitto SL, Janick J (1982) Polyox as an artificial seed coat for a sexual embryo. HortScience 17:448Google Scholar
  54. Kitto SL, Janick J (1985) Hardening increases survival of synthetically-coated asexual embryos of carrot. J Am Soc Hortic Sci 110:283–286Google Scholar
  55. Lambardi M, Benelli C, Ozudogru EA (2006) Synthetic seed technology in ornamental plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol 2. Global Science Books, London, pp 347–354Google Scholar
  56. Lange W, De Bock TS, Van Geyt JPC et al (1988) Monosomic additions in beet (Beta vulgaris) carrying extra chromosomes of B. procumbens. Theor Appl Genet 76(5):656–664PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lange W, Muller J, De Bock TS (1993) Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet. Fundam Appl Nematol 16:447–454Google Scholar
  58. Larkin PJ, Davies PA, Tanner GJ (1998) Nurse culture of low number of Medicago and Nicotiana protoplasts using calcium alginate beads. Plant Sci 58:203–210CrossRefGoogle Scholar
  59. Lata H, Chandra S, Khan IA et al (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. – an important medicinal plant. Physiol Mol Biol Plants 15:79–86PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leroy XJ, Leon K, Charles G et al (2000) Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Rep 19:1102–1107PubMedCrossRefPubMedCentralGoogle Scholar
  61. Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation and taxonomy. Thesis. Wageningen Agricultural University Papers 93–1, p 155Google Scholar
  62. Lewellen RT (1992) Use of plant introductions to improve populations and hybrids of sugarbeet. In: Use of plant introductions in Cultivar Development, Part 2. Crop Science Society of America, Madison, WI, pp 117–135Google Scholar
  63. Lewellen RT (2000) Registration of powdery mildew resistant sugarbeet germplasms CP01 and CP02. Crop Sci 40:1515Google Scholar
  64. Lewellen RT (2004) Registration of CP07 and CP08 sugarbeet germplasms with resistance to powdery mildew, rhizomania, and other diseases. Crop Sci 44(6):2276CrossRefGoogle Scholar
  65. Lewellen RT (2006) Registration of CN12 and CN72 sugarbeet germplasm populations with resistance to cyst nematode. Crop Sci 46(3):1414CrossRefGoogle Scholar
  66. Lewellen RT, Skoyen IO (1991) Improvement and performance of populations of sugarbeet × Beta maritima. J Sugar Beet Res 28:79Google Scholar
  67. Lewellen RT, Whitney ED (1993) Registration of germplasm lines developed from composite crosses of sugarbeet× Beta maritima. Crop Sci 33(4):882–883CrossRefGoogle Scholar
  68. Lulsdorf MM, Tautorus TE, Kikcio SI et al (1993) Germination of encapsulated embryos of interior spruce (Picea-glauca-engelmannii complex) and black spruce (Picea-mariana Mill). Plant Cell Rep 12:385–389Google Scholar
  69. Luterbacher M, Asher M, Deambrogio E et al (2004) Sources of resistance to diseases of sugar beet in related Beta germplasm: I. Foliar diseases. Euphytica 139:105–121CrossRefGoogle Scholar
  70. Magray MM, Wani KP, Chatto MA et al (2017) Synthetic seed technology. Int J Cur Microbiol Appl Sci 6(11):662–674CrossRefGoogle Scholar
  71. Marlander B, Lange T, Wulkow A (2011) Dispersal principles of sugar beet from seed to sugar with particular relation to genetically modified varieties. J Kult (J Cul Plants) 63:349–373Google Scholar
  72. McCarter JP (2008) Molecular approaches toward resistance to plant-parasitic nematodes. In: Plant cell monographs. Springer, BerlinGoogle Scholar
  73. McFarlane JS (1984) Final report: breeding for resistance to sugarbeet yellow wilt. Cooperative Agreement No. 58-9AHZ-0-520 between USDA-ARS, Washington, DC and Beet Sugar Development Foundation, Denver, COGoogle Scholar
  74. McGrann GR, Grimmer MK, Mutasa-Göttgens ES et al (2009) Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol 10(1):129–141PubMedCrossRefPubMedCentralGoogle Scholar
  75. McGrath JM, Saccomani M, Stevanato P et al (2007) Beet. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, Berlin, pp 191–207Google Scholar
  76. Mesbah M, Scholten OE, De Bock TS et al (1997) Chromosome localisation of genes for resistance to Heterodera schachtii, Cercospora beticola and Polymyxa betae using sets of Beta procumbens and B. patellaris derived monosomic additions in B. vulgaris. Euphytica 97(1):117–127CrossRefGoogle Scholar
  77. Micheli M, Pellegrino S, Piccioni E et al (2002) Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock. J Microencapsul 19:347–356PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mishra J, Singh M, Palni LMS et al (2011) Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurroa. Plant Cell Tissue Organ Cult 104:181–186CrossRefGoogle Scholar
  79. Munerati O (1932) Sull’incrocio della barbabietola coltivata con la beta selvaggia della costa adriatica. L’Industria Saccarifera Italiana 25:303–304Google Scholar
  80. Munerati O, Mezzadroli G, Zapparoli TV (1913) Osservazioni sulla Beta maritima L. nel triennio 1910–1912. Staz Sper Agric Ital 46:415–445Google Scholar
  81. Murashige T (1977) Plant cell and organ culture as horticultural practice. Acta Hortic 78:17–30CrossRefGoogle Scholar
  82. Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Hortic 108:247–252CrossRefGoogle Scholar
  83. Nyende AB, Schittenhelm S, Mix-Wagner G et al (2005) Yield and canopy development of field grown potato plants derived from synthetic seeds. Eur J Agron 22:175–184CrossRefGoogle Scholar
  84. Owen FV (1942) Inheritance of cross- and self-sterility and self-fertility in Beta vulgaris. J Agric Res 64:679–698Google Scholar
  85. Ozudogru EA, Kaya E, Kirdok E et al (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cell Dev Biol Plant 47(2):309–320CrossRefGoogle Scholar
  86. Panella L, Frese L (2000) Cercospora resistance in Beta species and the development of resistant sugarbeet lines. In: Asher MJC, Holtschulte B, Molard MR, Rosso F, Steinrücken G, Beckers R (eds) Cercospora beticola Sacc. biology, agronomic influence and control measures in sugar beet, Belgium, pp 163–176Google Scholar
  87. Panella L, Lewellen RT (2007) Broadening the genetic base of sugarbeet: introgression from wild relatives. Euphytica 154:383–400CrossRefGoogle Scholar
  88. Pelsy F, Merdinoglu D (1996) Identification and mapping of random amplified polymorphic DNA markers linked to a rhizomania resistance gene in sugar beet (Beta vulgaris L.) by bulked segregant analysis. Plant Breed 115(5):371–377CrossRefGoogle Scholar
  89. Pinker I, Abdel-Rahman SSA (2005) Artificial seed for propagation of Dendranthema × grandiflora (Ramat.). Prop Orn Plants 5:186–191Google Scholar
  90. Pintos B, Bueno MA, Cuenca B et al (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95:217–225CrossRefGoogle Scholar
  91. Pond S, Cameron S (2003) Tissue culture artificial seed. In: Thomas B (ed) Encyclopedia of applied plant sciences. Elsevier, Oxford, pp 1379–1388CrossRefGoogle Scholar
  92. Pourjavadi A, Barzegar SH, Mahdavinia GR (2006) MBA-cross linked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395CrossRefGoogle Scholar
  93. Ravi D, Anand P (2012) Production and applications of artificial seeds: a review. Int Res J Biol Sci 1(5):74–78Google Scholar
  94. Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11:14254–14275Google Scholar
  95. Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturenaus Carotten. Naturwissenschaften 45(14):344–345CrossRefGoogle Scholar
  96. Ren H, Zhang Q, Lu H et al (2012) Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio 41(8):913–917PubMedPubMedCentralCrossRefGoogle Scholar
  97. Richardson KL (2018) Registration of sugar beet germplasm lines CN921–515 and CN921–516 with sugar beet cyst nematode resistance from Beta vulgaris subsp. maritima. J Plant Regist 12(2):264–269Google Scholar
  98. Rihan HZ, Al-Issawi M, Al-Swedi F et al (2012) The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial seed produced. Sci Hortic 141:47–52CrossRefGoogle Scholar
  99. Rihan H, Kareem F, El-Mahrouk M et al (2017) Artificial seeds (principle, aspects and applications). Agronomy 7(4):71CrossRefGoogle Scholar
  100. Rizkalla AA, Badr-Elden AM, Ottai MES et al (2012) Development of artificial seed technology and preservation in sugar beet. Sugar Tech 14(3):312–320CrossRefGoogle Scholar
  101. Rossi V, Racca P, Giosue S (1995) Geophytopathological analysis of Cercospora leaf spot on sugarbeet in the Mediterranean area. Phytopathol Med:69–82Google Scholar
  102. Roy B, Mandal AB (2008) Development of synthesis seed involving androgenic and pro-embryos in elite indica rice. Indian J Biotechnol 7:515–519Google Scholar
  103. Saiprasad G (2001) Artificial seeds and their applications. Resonance 6:39–47CrossRefGoogle Scholar
  104. Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera using encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48CrossRefGoogle Scholar
  105. Sakhanokho HF, Pounders CT, Blythe EK (2013) Alginate encapsulation of Begonia microshoots for short-term storage and distribution. Sci World J 13:1–7CrossRefGoogle Scholar
  106. Salentijn EMJ, Sandal NN, Lange W et al (1992) Isolation of DNA markers linked to a beet cyst nematode resistance locus in Beta patellaris and Beta procumbens. Mol Gen Genet MGG 235(2–3):432–440PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sandal NN, Salentijn EMJ, Kleine M et al (1997) Backcrossing of nematode-resistant sugar beet: a second nematode resistance gene at the locus containing Hs1pro–i. Mol Breed 3:471–480CrossRefGoogle Scholar
  108. Sarkar D, Naik PS (1998) Synseeds in potato: an investigation using nutrient-encapsulated in vitro nodal cutting segments. Sci Hortic 73:179–184CrossRefGoogle Scholar
  109. Saunders JW, Tsai CJ (1999) Production of somatic embryos and shoots from sugarbeet callus: Effects of abscisic acid, other growth regulators, nitrogen source, sucrose concentration and genotype. In Vitro Cell Dev Biol Plant 35(1):18–24CrossRefGoogle Scholar
  110. Savitsky H (1960) Viable diploid, triploid, and tetraploid hybrids between Beta vulgaris and species of the section Patellares. J Am Soc Sugar Beet Technol 11:215–235CrossRefGoogle Scholar
  111. Savitsky H (1975) Hybridization between Beta vulgaris and B. procumbens and transmission of nematode (Heterodera schachtii) resistance to sugar beet. Can J Genet Cytol 17:197–209CrossRefGoogle Scholar
  112. Scholten OE, De Bock TS, Klein-Lankhorst RM et al (1999) Inheritance of resistance to beet necrotic yellow vein virus in Beta vulgaris conferred by a second gene for resistance. Theor Appl Genet 99(3–4):740–746PubMedCrossRefPubMedCentralGoogle Scholar
  113. Senaratna T, McKersie BD, Bowley SR (1990) Artificial seeds of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol Plant 16:85–90CrossRefGoogle Scholar
  114. Sharma S, Shahzad A, Jan N et al (2009a) In vitro studies on shoot regeneration through various explants and alginate-encapsulated nodal segments of Spilanthes mauritiana DC., an endangered medicinal herb. Int J Plant Dev Biol 3:56–61Google Scholar
  115. Sharma S, Shahzad A, Sahai A (2009b) Artificial seeds for propagation and preservation of Spilanthes acmella (L.) Murr., a threatened pesticidal plant species. Int J Plant Dev Biol 3:62–64Google Scholar
  116. Sharma S, Shahzad A, da Silva JAT (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31(2):186–207PubMedPubMedCentralCrossRefGoogle Scholar
  117. Singh AK, Chand S (2010) Plant regeneration from alginate encapsulated somatic embryos of Dalbergia sissoo Roxb. Indian J Biotechnol 9:319–324Google Scholar
  118. Singh B, Sharma S, Rani G et al (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107CrossRefGoogle Scholar
  119. Skaracis GN (2005) Molecular biology and biotechnology, genetic engineering. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, NH, pp 255–268Google Scholar
  120. Skaracis GN, Biancardi E (2000) Breeding for Cercospora resistance in sugar beet. In: Asher MJC, Holtschulte B, Molard MR, Rosso F, Steinrücken G, Beckers R. (eds) Cercospora beticola Sacc. biology, agronomic influence and control measures in sugar beet. International Institute for Beet Research (IIRB), Brussels. Adv Sugar Beet Res Ser 2:177–195Google Scholar
  121. Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Cult 99:193–198CrossRefGoogle Scholar
  122. Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells I. Growth and division of freely suspended cells. Am J Bot 45(9):693–703CrossRefGoogle Scholar
  123. Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766CrossRefGoogle Scholar
  124. Tabassum B, Nasil IA, Farooq AM et al (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotechnol 9:7026–7032Google Scholar
  125. Tamada T, Baba T (1973) Beet necrotic yellow vein virus from rhizomania affected sugar beet in Japan. Ann Phytopathol Soc Jpn 39:325–332CrossRefGoogle Scholar
  126. Van Geyt JPC, Oleo M, Lange W et al (1988) Monosomic additions in beet (Beta vulgaris) carrying extra chromosomes of Beta procumbens. Theor Appl Genet 76(4):577–586Google Scholar
  127. Van Geyt JPC, Lange W, Oleo M et al (1990) Natural variation within the genus Beta and its possible use for breeding sugar beet: a review. Euphytica 49(1):57–76CrossRefGoogle Scholar
  128. Varshney A, Anis M (2014) Synseed conception for short-term storage, germplasm exchange and potentialities of regeneration genetically stable plantlets of desert date tree (Balanites aegyptiaca Del.). Agrofor Syst 88:321–329CrossRefGoogle Scholar
  129. Wang WG, Wang SH, Wu XA et al (2007) High frequency plantlet regeneration from callus and artificial seed production of rock plant Pogonatherum paniceum (Lam.) Hack. (Poaceae). Sci Hortic 113:196–201Google Scholar
  130. Weiland J, Koch G (2004) Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol Plant Pathol 5(3):157–166PubMedCrossRefPubMedCentralGoogle Scholar
  131. Westcott RJ (1981) Tissue culture storage of potato germplasm. Use of growth retardants 2. Potato Res 24:343–352CrossRefGoogle Scholar
  132. Winkelmann T, Meyer L, Serek M (2004) Germination of encapsulated somatic embryos of Cyclamen persicum. Hortic Sci 39:1093–1097CrossRefGoogle Scholar
  133. Yu MH (1983) Sugar beet germplasm resistant to sugar beet nematode. Crop Sci 23:1021–1022CrossRefGoogle Scholar
  134. Yu MH (1989) Callus induction and differentiation from leaf explants of different species of the genus Beta. Crop Sci 29:205–209CrossRefGoogle Scholar
  135. Yu MH (1997) Registration of Mi-1 root-knot nematode resistant beet germplasm line. Crop Sci 37(1):295–295CrossRefGoogle Scholar
  136. Yu MH (2002) Registration of sugarbeet germplasm M1-3 resistant to root-knot nematode. Crop Sci 42(5):1756CrossRefGoogle Scholar
  137. Yu Y (2004) Genetics of Aphanomyces disease resistance in sugarbeet (Beta vulgaris), AFLP mapping and QTL analyses. PhD Dissertation. Michigan State UniversityGoogle Scholar
  138. Yu MH (2005) Cyst nematode. In: Biancardi E, Campbell LG, Skaracis GN, De Biaggi M (eds) Genetics and breeding of sugar beet. Science, Enfield, NH, pp 103–109Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saber Delpasand Khabbazi
    • 1
  • Canan Yüksel Özmen
    • 1
  • Ali Ergül
    • 1
    Email author
  1. 1.Biotechnology Institute, Ankara UniversityAnkaraTurkey

Personalised recommendations