Skip to main content
Log in

Molecular-genetic mechanisms of regulation of growth habit in wheat

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The vernalization requirement determines the need of plants in a prolonged period of cold treatment for transition from a vegetative to a reproductive phase. The vernalization response in wheat is controlled by the alleles of Vrn genes. A molecular structure and causes that are the basis of alternative alleles have been defined for almost all Vrn genes. Vrn1, Vrn2, and Vrn3 interact epistaticaly and form the positive feedback loop that is activated in winter wheat by the vernalization conditions. Vrn2 locus is a key element for flowering repression in winter wheat before vernalization, whereas Vrn1 mostly determines flowering time for spring varieties. In the present review, the studies of molecular mechanisms and genetic determination of pathways that regulate of growth habit (type of development) in wheat have been analyzed. The organization, structure, and functions of Vrn genes and their expression products are discussed in detail. Particular attention is paid to the structure of regulatory regions and the molecular mechanisms, which regulate of these genes’ expression. The modern view on the model reflecting interaction between Vrn genes and the environmental during vernalization has been formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cockram, J., Jones, H., Leigh, F.J., et al., Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity, J. Exp. Bot., 2007, vol. 58, no. 6, pp. 1231–1244.

    Article  CAS  PubMed  Google Scholar 

  2. Worland, A., The influence of flowering time genes on environmental adaptability in European wheats, Euphytica, 1996, vol. 89, no. 1, pp. 49–57.

    Article  Google Scholar 

  3. Yan, L., Loukoianov, A., Tranquilli, G., et al., Positional cloning of the wheat vernalization gene VRN1, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 10, pp. 6263–6268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Yan, L., Loukoianov, A., Blechl, A., et al., The wheat VRN2 gene is a flowering repressor down-regulated by vernalization, Sciecne, 2004, vol. 303, no. 5664, pp. 1640–1644.

    Article  CAS  Google Scholar 

  5. Yan, L., Fu, D., Li, C., et al., The wheat and barley vernalization gene VRN3 is an orthologue of FT, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 51, pp. 19581–19586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yoshida, T., Nishida, H., Zhu, J., et al., Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat, Theor. Appl. Genet., 2010, vol. 120, no. 3, pp. 543–552.

    Article  CAS  PubMed  Google Scholar 

  7. Distelfeld, A., Li, C., and Dubcovsky, J., Regulation of flowering in temperate cereals, Curr. Opin. Plant. Biol., 2009, vol. 12, no. 2, pp. 178–184.

    Article  CAS  PubMed  Google Scholar 

  8. Tadege, M., Sheldon, C., Helliwell, C., et al., Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice, Plant Biotechnol., 2003, vol. 1, no. 5, pp. 361–369.

    Article  CAS  Google Scholar 

  9. Adam, H., Ouellet, F., Kane, N., et al., Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development, Plant Cell Physiol., 2007, vol. 48, no. 8, pp. 1192–1206.

    Article  CAS  PubMed  Google Scholar 

  10. Diallo, A., Kane, N., Agharbaoui, Z., et al., Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance, PLoS One, 2010, vol. 5, no. 1, p. e8690.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Danyluk, J., Kane, N., Breton, G., et al., TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals, Plant Physiol., 2003, vol. 132, no. 4, pp. 1849–1860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Trevaskis, B., Bagnall, D., Ellis, M., et al., MADS box genes control vernalization-induced flowering in cereals, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 22, pp. 13099–13104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Murai, K., Miyamae, M., Kato, H., et al., WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth, Plant Cell Physiol., 2003, vol. 44, no. 12, pp. 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  14. Distelfeld, A. and Dubcovsky, J., Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels, Mol. Genet. Genom., 2010, vol. 283, no. 3, pp. 223–232.

    Article  CAS  Google Scholar 

  15. Shitsukawa, N., Ikari, C., Shimada, S., et al., The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene, Genes Genet. Syst., 2007, vol. 82, no. 2, pp. 167–170.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, A. and Dubcovsky, J., Wheat TILLING mutants show that the vernalization gene VRN1 downregulates the flowering repressor VRN2 in leaves but is not essential for flowering, PLoS Genet., 2012, vol. 8, no. 12, p. e1003134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kinjo, H., Shitsukawa, N., Takami, S., and Murai, K., Diversification of three APETALA1/FRUITFULL-like genes in wheat, Mol. Genet. Genom., 2012, vol. 287, no. 4, pp. 283–294.

    Article  CAS  Google Scholar 

  18. Loukianov, A., Yan, L., Blechl, A., et al., Regulation of VRN1 vernalization genes in normal and transgenic polyploidy wheat, Plant Physiol., 2005, vol. 138, no. 4, pp. 2364–2373.

    Article  Google Scholar 

  19. Stelmakh, A.F., Growth habit in common wheat (Triticum aestivum L. em. Thell.), Euphytica, 1987, vol. 36, no. 2, pp. 513–519.

    Article  Google Scholar 

  20. Stelmakh, A.F., Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat, Euphytica, 1993, vol. 65, pp. 53–60.

    Article  Google Scholar 

  21. Zhnag, X., Xiao, Y., Zhang, Y., et al., Allelic variation at the vernalization genes Vrn-a1, Vrn-b1, Vrn-d1 and Vrn-b3 in Chinese wheat cultivars and their association with growth habit, Crop Sci., 2008, vol. 48, no. 2, pp. 458–470.

    Article  Google Scholar 

  22. Pugsley, A.T., A genetic analysis of the spring-wheat habit in wheat, Aust. J. Agric. Res., 1971, vol. 22, pp. 21–23.

    Article  Google Scholar 

  23. Alonso-Peral, M.M., Oliver, S.N., Casao, M.C., et al., The promoter of the cereal VERNALIZATION1 gene is sufficient for transcriptional induction by prolonged cold, PLoS One, 2011, vol. 26, no. 12, p. e29456.

    Article  Google Scholar 

  24. Sasani, S., Hemming, M.N., Oliver, S., et al., The influence of vernalization and day length cues on the expression of flowering-time genes in the leaves and shoot apex of barley (Hordeum vulgare), J. Exp. Bot., 2009, vol. 60, no. 7, pp. 2169–2178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zitzewitz, J., Szucs, P., Dubcovsky, J., et al., Molecular and structural characterization of barley vernalization genes, Plant. Mol. Biol., 2005, vol. 59, no. 3, pp. 449–467.

    Article  CAS  Google Scholar 

  26. Hemming, M.N., Fieg, S., Peacock, W.J., et al., Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction, Mol. Genet. Genom., 2009, vol. 282, no. 2, pp. 107–117.

    Article  CAS  Google Scholar 

  27. Trevaskis, B., Tadege, M., Hemming, M., et al., Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley, Plant Physiol., 2007, vol. 143, no. 1, pp. 225–235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Diaz, A., Zikhali, M., Turner, A., et al., Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum), PLoS One, 2012, vol. 7, no. 3, p. e33234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Golovina, K., Kondratenko, E., Blinov, A., and Goncharov, N., Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats, BMC Plant Biol., 2010, vol. 10, no. 168, pp. 168–183.

    Article  Google Scholar 

  30. Li, G., Yu, M., Fang, T., et al., Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level, Plant J., 2013, vol. 76, no. 5, pp. 742–753.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Treisman, R., The serum response element, Trends Biochem. Sci., 2002, vol. 17, no. 10, pp. 423–426.

    Article  Google Scholar 

  32. Santelli, E. and Richmond, T., Crystal structure of MEF2A core bound to DNA at 1.5 resolution, J. Mol. Biol., 2000, vol. 297, no. 2, pp. 437–449.

    Article  CAS  PubMed  Google Scholar 

  33. Patrushev, L.I., Ekspressiya genov (Gene Expression), Moscow: Nauka, 2000.

    Google Scholar 

  34. Lupas, A., Van Dyke, M., and Stock, J., Predicting coiled coils from protein sequences, Science, 1991, vol. 252, no. 5009, pp. 1162–1164.

    Article  CAS  PubMed  Google Scholar 

  35. Limin, A. and Fowler, D., Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development, Plant, 2006, vol. 224, no. 2, pp. 360–366.

    Article  CAS  Google Scholar 

  36. Stockinger, E., Skinner, J., Gardner, K., et al., Expression levels of barley Cbf genes at the frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2, Plant, 2007, vol. 51, no. 2, pp. 308–321.

    Article  CAS  Google Scholar 

  37. Francia, E., Rizza, F., Cattivelli, L., et al., Two loci on chromosome 5H determine low-temperature tolerance in a Nure (winter) Tremois (spring) barley map, Theor. Appl. Genet., 2004, vol. 108, no. 4, pp. 670–680.

    Article  CAS  PubMed  Google Scholar 

  38. Knox, A., Li, C., Vargurifalvi, A., et al., Identification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum, Plant. Mol. Biol., 2008, vol. 67, no. 3, pp. 257–270.

    Article  CAS  PubMed  Google Scholar 

  39. Galiba, G., Vargurifalvi, A., Li, C., et al., Regulatory genes involved in the determination of frost tolerance in temperate cereals, Plant Sci., 2009, vol. 176, no. 1, pp. 12–19.

    Article  CAS  Google Scholar 

  40. Dhillon, T., Pearce, S., Stockinger, E., et al., Regulation of freezing tolerance and flowering in temperate cereals: the VRN1 connection, Plant Physiol., 2010, vol. 153, no. 4, pp. 1846–1858.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li, C. and Dubcovsky, J., Wheat FT protein regulates VRN1 transcription through interactions with FDL2, Plant, 2008, vol. 55, no. 4, pp. 543–554.

    Article  CAS  Google Scholar 

  42. Stel’makh, A.F. and Fait, V.I., Effects of Vrn loci of common wheat by agronomic traits under different environmental conditions, Tsitol. Genet., 1995, vol. 29, no. 4, pp. 54–61.

    Google Scholar 

  43. Fait, V.I., Avsnin, V.I., and Palamarchuk, A.I., Effects of Vrn-Ala and Vrn Bla genes by agronomic traits in Triticum durum Desf., Selekt. Nasinnitstvo, 2008, vol. 96, pp. 252–259.

    Google Scholar 

  44. Fu, D., Szucs, P., Yan, L., et al., Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat, Mol. Genet. Genom, 2005, vol. 273, no. 4, pp. 54–65.

    Article  CAS  Google Scholar 

  45. Yan, L., Helguera, M., Kato, K., et al., Allelic variation at the vrn1 promoter region in polyploidy wheat, Theor. Appl. Genet., 2004, vol. 109, no. 8, pp. 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  46. Pidal, B., Yan, L., Fu, D., et al., The CArG-Box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response, H. Hered., 2009, vol. 100, no. 3, pp. 355–364.

    Article  CAS  Google Scholar 

  47. Shcherban, A.B., Efremova, T.T., and Salina, E.A., Identification of a new Vrn-B1 allele using two nearisogenic wheat lines with difference in heading time, Mol. Breed., 2011, vol. 9, no. 3, pp. 675–685.

    Google Scholar 

  48. Dubcovsky, J., Loukoianov, A., Fu, D., et al., Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2, Plant. Mol. Biol., 2006, vol. 60, no. 64, pp. 469–480.

    Article  CAS  PubMed  Google Scholar 

  49. Santra, D.K., Santra, M., Allan, R.E., et al., Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northeast region of the USA, Plant Breed., 2009, vol. 128, pp. 576–584.

    Article  CAS  Google Scholar 

  50. Szucs, P., Skinner, J.S., Karsai, I., et al., Validation of the VRN-H2/VRH-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, Mol. Genet. Genom., 2007, vol. 277, no. 3, pp. 249–261.

    Article  CAS  Google Scholar 

  51. Cockram, J., Chiapparino, E., Taylor, S.A., et al., Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype, Theor. Appl. Genet., 2007, vol. 115, no. 7, pp. 993–1001.

    Article  CAS  PubMed  Google Scholar 

  52. Cockram, J., Mackay, I.J., and O’Sullivan, D.M., The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci, Genetics, 2007, vol. 177, pp. 1–5.

    Article  Google Scholar 

  53. Diallo, A.O., Ali-Benali, M.A., Badawi, M., et al., Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation, Mol. Genet. Genom., 2012, vol. 287, no. 7, pp. 575–590.

    Article  CAS  Google Scholar 

  54. Trevaskis, B., Hemming, M., Dennis, E., and Peacock, W., The molecular basis of vernalizationinduced flowering in cereals, Trends Plant Sci., 2007, vol. 12, no. 8, pp. 352–357.

    Article  CAS  PubMed  Google Scholar 

  55. Oliver, S., Finnegan, E., Dennis, E., et al., Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 20, pp. 8386–8391.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sung, S. and Amasino, R., Molecular genetic studies of the memory of winter, Exp. Bot., 2006, vol. 57, no. 13, pp. 3369–3377.

    Article  CAS  Google Scholar 

  57. Bernstein, B.E., Mikkelsen, T.S., Xie, X., et al., A bivalent chromatin structure marks key development genes in embryonic stem cells, Cell, 2006, vol. 125, no. 2, pp. 315–326.

    Article  CAS  PubMed  Google Scholar 

  58. Gendall, A., Levy, Y., Wilson, A., and Dean, C., The VERNALIZATION2 gene mediates the epigenetic regulation of vernalization in Arabidopsis, Cell, 2001, vol. 107, no. 4, pp. 525–535.

    Article  CAS  PubMed  Google Scholar 

  59. Pien, S., Fleury, D., Mylne, J., et al., ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation, Plant Cell, 2008, vol. 20, no. 3, pp. 580–588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Schuettengruber, B., Chourrout, D., Vervoort, M., et al., Genome regulation by Polycomb and Trithorax proteins, Cell, 2007, vol. 128, no. 4, pp. 735–745.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, D., Wang, U., Wang, Y., and He, Y., Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components, PLoS One, 2008, vol. 3, no. 10, p. e3404.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Fu, D., Dunbar, M., and Dubcovsky, J., Wheat VIN3like PHD finger genes are upregulated by vernalization, Mol. Genet. Genom., 2007, vol. 277, no. 3, pp. 301–313.

    Article  CAS  Google Scholar 

  63. Koyama, K., Hatano, H., Nakamura, J., and Takumi, S., Characterization of three VERNALIZATION INSENSITIVE3-like (VIL) homologs in wild wheat, Aegilops tauschii Coss, Hereditas, 2012, vol. 149, no. 2, pp. 62–71.

    Article  Google Scholar 

  64. Kane, N., Agharbaoui, Z., Diallo, A., et al., TaVRT2 represses transcription of the wheat vernalization gene TaVRN1, Plant, 2007, vol. 51, no. 4, pp. 670–680.

    Article  CAS  Google Scholar 

  65. Dubcovsky, J., Li, C., Distelfeld, A., et al., Genes and gene networks regulating wheat development, in Proc. 11th Int. Wheat Genet. Symp. (Brisbane, Aug. 24–29 2008), Appels, R., Ed., Sydney: Univ. Press, 2008, pp. 24–29.

    Google Scholar 

  66. McKinney, H. and Sando, W., Earliness of sexual reproduction in wheat as influenced by temperature and light in relation to growth phases, Agric. Res., 1935, vol. 51, no. 7, pp. 621–641.

    Google Scholar 

  67. Krekule, J., Varietal differences in replacing vernalization by a short day in winter wheat, Biol. Plant., 1964, vol. 6, pp. 299–305.

    Article  Google Scholar 

  68. Evans, L., Short day induction of inflorescence initiation in some winter wheat varieties, Aust. J. Plant Physiol., 1987, vol. 14, no. 3, pp. 277–286.

    Article  Google Scholar 

  69. Heide, O., Control of flowering and reproduction in temperate grasses, New Phytol., 1994, vol. 128, no. 2, pp. 347–362.

    Article  CAS  Google Scholar 

  70. Wigge, P., Kim, M., Jaeger, K., et al., Integration of spatial and temporal information during floral induction in Arabidopsis, Science, 2005, vol. 39, no. 5737, pp. 1056–1059.

    Article  Google Scholar 

  71. Dubcovsky, J., Lijavetzky, D., Appendino, L., and Tranquilli, G., Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement, Theor. Appl. Genet., 1998, vol. 97, no. 5, pp. 968–975.

    Article  CAS  Google Scholar 

  72. Putterill, J., Robson, F., Lee, K., et al., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell, 1995, vol. 80, no. 6, pp. 847–857.

    Article  CAS  PubMed  Google Scholar 

  73. Tranquilli, G. and Dibcovsky, J., Epistatic interactions between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat, J. Hered., 2000, vol. 91, no. 4, pp. 304–306.

    Article  CAS  PubMed  Google Scholar 

  74. Distelfeld, A., Tranquilli, G., Li, C., et al., Genetic and molecular characterization of the VRN2 loci in tetraploid wheat, Plant Physiol., 2009, vol. 149, no. 1, pp. 245–257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Zhu, X., Tan, C., Cao, S., and Yan, L., Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat, Mol. Breed., 2011, vol. 27, no. 4, pp. 501–510.

    Article  CAS  Google Scholar 

  76. Muterko, O.F., Balashova, I.A., and Sivolap, Yu.M., Characteristics of rare species of hexaploid and tetraploid wheat with null alleles of ZCCT-1 genes, Nauk. Visn. Uzhgorod. Univ., Ser. Biol., 2013, vol. 34, pp. 103–106.

    Google Scholar 

  77. Ma, L.-J., Wang, X., Wei, L., et al., Sequences analysis of the vernalization gene VRN2 in different development characteristic common wheat (Triticum aestivum L.), J. Triticeae Crops, 2012, vol. 32, no. 4, pp. 603–609.

    CAS  Google Scholar 

  78. Li, C., Distelfeld, A., Comis, A., and Dubcovsky, J., Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes, Plant, 2011, vol. 67, no. 5, pp. 763–773.

    Article  CAS  Google Scholar 

  79. Trevaskis, B., Hemming, M., Peacock, W., and Dennis, E., HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status, Plant Physiol., 2006, vol. 140, no. 4, pp. 1397–1405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Turner, A., Beales, J., Faure, S., et al., The pseudoresponse regulator Ppd-H1 provides adaptation to photoperiod in barley, Science, 2005, vol. 310, no. 5750, pp. 1031–1034.

    Article  CAS  PubMed  Google Scholar 

  81. Robson, F., Costa, M., Hepworth, S., et al., Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants, Plant, 2001, vol. 28, no. 6, pp. 619–631.

    Article  CAS  Google Scholar 

  82. Wenkel, S., Turck, F., Singer, K., et al., CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis, Plant Cell, 2006, vol. 18, no. 11, pp. 2971–2984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Law, C. and Worland, A., Genetic analysis of some flowering time and adaptive traits in wheat, New Phytol., 1997, vol. 137, no. 1, pp. 19–28.

    Article  Google Scholar 

  84. Corbesier, L., Vincent, C., Jang, S., et al., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science, 2007, vol. 316, no. 5827, pp. 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  85. Turck, F., Fornara, F., and Coupland, G., Regulation and identity of florigen: FLOWERING LOCUS T moves center stage, Annu. Rev. Plant Biol., 2008, vol. 59, no. 1, pp. 573–594.

    Article  CAS  PubMed  Google Scholar 

  86. Bonnin, I., Rousset, M., Madur, D., et al., FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat, Theor. Appl. Genet., 2008, vol. 116, no. 3, pp. 383–394.

    Article  CAS  PubMed  Google Scholar 

  87. Chen, F., Gao, M., Zhang, J., et al., Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China, BMC Plant Biol., 2013, vol. 13, p. 199.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Chen, Y., Carver, B., Wang, S., et al., Genetic regulation of developmental phases in winter wheat, Mol. Breed., 2010, vol. 26, no. 4, pp. 573–582.

    Article  Google Scholar 

  89. Iwaki, K., Haruna, S., Niwa, T., and Kato, K., Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype, Plant Breed., 2001, vol. 120, pp. 107–114.

    Article  CAS  Google Scholar 

  90. Iwaki, K., Nakagawa, K., Kuno, H., and Kato, K., Ecogeographical differentiation in East Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype, Euphytica, 2000, vol. 111, pp. 137–143.

    Article  Google Scholar 

  91. O’Brien, L., Morell, M., Wrigley, C., and Appels, R., The World Wheat Book. A History of Wheat Breeding, Bonjean, A.P. and Angus, W.J., Eds., Lavoisier, 2001, pp. 611–648.

  92. Pugsley, A.T., Additional genes inhibiting winter habit in wheat, Euphytica, 1972, vol. 21, no. 3, pp. 547–552.

    Article  Google Scholar 

  93. Kato, K., Nakagawa, K., and Kuno, H., Chromosomal location of the vernalization response, Vrn2 and Vrn4, in common wheat, Triticum aestivum L., Wheat Inform. Serv., 1993, vol. 76, no. 1, pp. 53–53.

    Google Scholar 

  94. Kato, K., Yamashita, M., Ishimoto, K., et al., Genetic analysis of two genes for vernalization response, the former Vrn2 and Vrn4, using PCR based molecular markers, in Proc. 10th Int. Wheat Genet. Symp., Paestum, 2003, pp. 971–973.

    Google Scholar 

  95. Kippes, N., Zhu, J., Chen, A., et al., Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat, Mol. Genet. Genom., 2014, vol. 289, no. 1, pp. 47–62.

    Article  CAS  Google Scholar 

  96. Sung, S., Schmitz, R.J., and Amasino, R.M., A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis, Gene Dev., 2006, vol. 20, pp. 3244–3248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Turner, A.S., Faure, S., Zhang, Y., and Laurie, D.A., The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization, Theor. Appl. Genet., 2013, vol. 126, no. 9, pp. 2267–2277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Beales, J., Turner, A., Griffiths, S., et al., A pseudoresponse regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2007, vol. 115, no. 5, pp. 721–733.

    Article  CAS  PubMed  Google Scholar 

  99. Mokanu, N.V. and Fayt, V.I., Differences in the effects of alleles of the gene Vrd1 and Ppd-D1 with respect to winter hardiness, frost tolerance and yield in winter wheat, Cytol. Genet., 2008, vol. 42, no. 6, pp. 384–390.

    Google Scholar 

  100. Dubcovsky, J., Chen, C., and Yan, L., Molecular characterization of the allelic variation at the Vrn-H2 vernalization locus in barley, Mol. Breed., 2005, vol. 15, no. 4, pp. 395–407.

    Article  CAS  Google Scholar 

  101. Valverde, F., Mouradov, A., Soppe, W., et al., Photoreceptor regulation of constants protein in photoperiodic flowering, Science, 2004, vol. 303, no. 5660, pp. 1003–1006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Muterko.

Additional information

Original Ukrainian Text © A.F. Muterko, I.A. Balashova, V.I. Fayt, Yu.M. Sivolap, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 1, pp. 71–86.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muterko, A.F., Balashova, I.A., Fayt, V.I. et al. Molecular-genetic mechanisms of regulation of growth habit in wheat. Cytol. Genet. 49, 58–71 (2015). https://doi.org/10.3103/S0095452715010089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452715010089

Keywords

Navigation