Skip to main content
Log in

Population Pharmacokinetics and Pharmacodynamics for Treatment Optimization in Clinical Oncology

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Population pharmacokinetic and pharmacodynamic analysis is an important tool to support optimal treatment in clinical oncology. The population approach is suitable to explain variability between patients and to establish relationships between drug exposure and a relevant pharmacodynamic parameter. This can facilitate the selection of dosing schedules, the development of strategies for dose individualization and the application of therapeutic drug monitoring of anticancer agents. This review discusses the role of population pharmacokinetics and pharmacodynamics in clinical oncology to enhance the efficiency of drug development and to support the development of safe and effective dosing regimens for optimal treatment of cancer patients. An overview of published population studies of investigational anticancer agents and established treatment regimens is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX

Similar content being viewed by others

References

  1. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther 1997; 61: 275–91

    Article  PubMed  CAS  Google Scholar 

  2. US FDA Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER). Guidance for industry: population pharmacokinetics [online]. Rockville (MD): CDER, 1999 Feb. Available from URL: http://www.fda.gov/cder/Guidance [Accessed 2008 May 6]

    Google Scholar 

  3. Steimer JL, Mallet A, Golmard JL, et al. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixedeffect model. Drug Metab Rev 1984; 15: 265–92

    Article  PubMed  CAS  Google Scholar 

  4. Ette EI, Williams PJ. Population pharmacokinetics II: estimation methods. Ann Pharmacother 2004; 38: 1907–15

    Article  PubMed  CAS  Google Scholar 

  5. Jonsson EN, Wade JR, Karlsson MO. Nonlinearity detection: advantages of nonlinear mixed-effects modeling. AAPS PharmSci 2000; 2: E32

    Article  PubMed  CAS  Google Scholar 

  6. Ette EI, Williams PJ, Lane JR. Population pharmacokinetics III: design, analysis, and application of population pharmacokinetic studies. Ann Pharmacother 2004; 38: 2136–44

    Article  PubMed  Google Scholar 

  7. Duffull S, Waterhouse T, Eccleston J. Some considerations on the design of population pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2005; 32: 441–57

    Article  PubMed  Google Scholar 

  8. Tamura T, Sasaki Y, Nishiwaki Y, et al. Phase I study of paclitaxel by three-hour infusion: hypotension just after infusion is one of the major dose-limiting toxicities. Jpn J Cancer Res 1995; 86: 1203–9

    Article  PubMed  CAS  Google Scholar 

  9. Karlsson MO, Molnar V, Freijs A, et al. Pharmacokinetic models for the saturable distribution of paclitaxel. Drug Metab Dispos 1999; 27: 1220–3

    PubMed  CAS  Google Scholar 

  10. Henningsson A, Karlsson MO, Vigano L, et al. Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 2001; 19: 4065–73

    PubMed  CAS  Google Scholar 

  11. Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 2002; 20: 4713–21

    Article  PubMed  Google Scholar 

  12. Urien S, Rezai K, Lokiec F. Pharmacokinetic modelling of 5-FU production from capecitabine: a population study in 40 adult patients with metastatic cancer. J Pharmacokinet Pharmacodyn 2005; 32: 817–33

    Article  PubMed  CAS  Google Scholar 

  13. Kerbusch T, Huitema ADR, Ouwerkerk J, et al. Evaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using NONMEM. Br J Clin Pharmacol 2000; 49: 555–61

    Article  PubMed  CAS  Google Scholar 

  14. Kerbusch T, Mathôt RAA, Keizer HJ, et al. Influence of dose and infusion duration on pharmacokinetics of ifosfamide and metabolites. Drug Metab Dispos 2001; 29: 967–75

    PubMed  CAS  Google Scholar 

  15. Friberg LE, Karlsson MO. Mechanistic models for myelosuppression. Invest New Drugs 2003; 21: 183–94

    Article  PubMed  CAS  Google Scholar 

  16. Stewart CF, Baker SD, Heideman RL, et al. Clinical pharmacodynamics of continuous infusion topotecan in children: systemic exposure predicts hematologic toxicity. J Clin Oncol 1994; 12: 1946–54

    PubMed  CAS  Google Scholar 

  17. Mould DR, Holford NH, Schellens JHM, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther 2002; 71: 334–48

    Article  PubMed  CAS  Google Scholar 

  18. Karlsson MO, Port RE, Ratain MJ, et al. A population model for the leukopenic effect of etoposide. Clin Pharmacol Ther 1995; 57: 325–34

    Article  PubMed  Google Scholar 

  19. Minami H, Sasaki Y, Saijo N, et al. Indirect-response model for the time course of leukopenia with anticancer drugs. Clin Pharmacol Ther 1998; 64: 511–21

    Article  PubMed  CAS  Google Scholar 

  20. Friberg LE, Brindley CJ, Karlsson MO, et al. Models of schedule dependent haematological toxicity of 2′-deoxy-2′-methylidenecytidine (DMDC). Eur J Clin Pharmacol 2000; 56: 567–74

    Article  PubMed  CAS  Google Scholar 

  21. Troconiz IF, Garrido MJ, Segura C, et al. Phase I dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumours. Cancer Chemother Pharmacol 2006; 57: 727–35

    Article  PubMed  CAS  Google Scholar 

  22. Leger F, Loos WJ, Bugat R, et al. Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther 2004; 76: 567–78

    Article  PubMed  CAS  Google Scholar 

  23. Latz JE, Karlsson MO, Rusthoven JJ, et al. A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 2006; 57: 412–26

    Article  PubMed  Google Scholar 

  24. Hing J, Perez-Ruixo JJ, Stuyckens K, et al. Population PK/PD modelling & simulation of hematological toxicity of trabectedin in cancer subjects [abstract no. 1020; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.pagemeeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  25. van Kesteren C, Zandvliet AS, Karlsson MO, et al. Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 2005; 23: 225–34

    Article  PubMed  CAS  Google Scholar 

  26. Sandstrom M, Lindman H, Nygren P, et al. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol 2006; 58: 143–56

    Article  PubMed  CAS  Google Scholar 

  27. Zandvliet AS, Siegel-Lakhai WS, Beijnen JH, et al. PK/PD model of indisulam and capecitabine: interaction causes excessive myelosuppression. Clin Pharmacol Ther 2008; 83: 829–39

    Article  PubMed  CAS  Google Scholar 

  28. Sandstrom M, Lindman H, Nygren P, et al. Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J Clin Oncol 2005; 23: 413–21

    Article  PubMed  CAS  Google Scholar 

  29. Xie R, Mathijssen RH, Sparreboom A, et al. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther 2002; 72: 265–75

    Article  PubMed  CAS  Google Scholar 

  30. Hénin E, Zuideveld KP, Dartois C, et al. A KPD model for ordered categorical data: application to toxicity score in colorectal cancer patients treated with capecitabine [abstract no. 929; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  31. Mould DR, Baumann A, Kuhlmann J, et al. Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol 2007; 64: 278–91

    Article  PubMed  CAS  Google Scholar 

  32. Huizing MT, Giaccone G, van Warmerdam LJ, et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J Clin Oncol 1997; 15: 317–29

    PubMed  CAS  Google Scholar 

  33. Claret L, Girard P, Zuideveld KP, et al. A longitudinal model for tumor size measurements in clinical oncology studies [abstract no. 1004; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  34. Jadhav PR, Agersø H, Tornøe CW, et al. Semi-mechanistic pharmacodynamic modeling for degarelix, a novel gonadotropin releasing hormone (GnRH) blocker. J Pharmacokinet Pharmacodyn 2006; 33: 609–34

    Article  PubMed  CAS  Google Scholar 

  35. Tornoe CW, Agerso H, Senderovitz T, et al. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling of the hypothalamic-pituitary-gonadal axis following treatment with GnRH analogues. Br J Clin Pharmacol 2007; 63: 648–64

    Article  PubMed  CAS  Google Scholar 

  36. Herceptin® (trastuzumab) [package insert]. South San Francisco (CA): Genentech, Inc., 2003 Oct

  37. Bruno R, Washington CB, Lu JF, et al. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 2005; 56: 361–9

    Article  PubMed  CAS  Google Scholar 

  38. Baselga J, Carbonell X, Castaneda-Soto NJ, et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 2005; 23: 2162–71

    Article  PubMed  CAS  Google Scholar 

  39. Avramis VI, Spence SA. Clinical pharmacology of asparaginases in the United States: asparaginase population pharmacokinetic and pharmacodynamic (PKPD) models (NONMEM) in adult and pediatric ALL patients. J Pediatr Hematol Oncol 2007; 29: 239–47

    Article  PubMed  CAS  Google Scholar 

  40. Gallo JM, Brennan J, Hamilton TC, et al. Time-dependent pharmacodynamic models in cancer chemotherapy: population pharmacodynamic model for glutathione depletion following modulation by buthionine sulfoximine (BSO) in a phase I trial of melphalan and BSO. Cancer Res 1995; 55: 4507–11

    PubMed  CAS  Google Scholar 

  41. Bailey HH, Mulcahy RT, Tutsch KD, et al. Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J Clin Oncol 1994; 12: 194–205

    PubMed  CAS  Google Scholar 

  42. Ribbing J. Covariate model building in nonlinear mixed effects models [thesis]. Uppsala: Uppsala University, 2007

    Google Scholar 

  43. Miller AA. Body surface area in dosing anticancer agents: scratch the surface! J Natl Cancer Inst 2002; 94: 1822–1823

    Article  PubMed  CAS  Google Scholar 

  44. Chen X, Bies RR, Ramanathan RK, et al. Population pharmacokinetic analysis of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) in adult patients with advanced malignancies. Cancer Chemother Pharmacol 2005; 55: 237–43

    Article  PubMed  CAS  Google Scholar 

  45. Kloft C, Graefe EU, Tanswell P, et al. Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Invest New Drugs 2004; 22: 39–52

    Article  PubMed  CAS  Google Scholar 

  46. van Kesteren C, Mathôt RAA, Raymond E, et al. Population pharmacokinetics of the novel anticancer agent E7070 during four phase I studies: model building and validation. J Clin Oncol 2002; 20: 4065–73

    Article  PubMed  Google Scholar 

  47. Urien S, Lokiec F. Population pharmacokinetics of total and unbound plasma cisplatin in adult patients. Br J Clin Pharmacol 2004; 57: 756–63

    Article  PubMed  CAS  Google Scholar 

  48. Bressolle F, Joulia JM, Pinguet F, et al. Circadian rhythm of 5-fluorouracil population pharmacokinetics in patients with metastatic colorectal cancer. Cancer Chemother Pharmacol 1999; 44: 295–302

    Article  PubMed  CAS  Google Scholar 

  49. Ng CM, Lum BL, Gimenez V, et al. Rationale for fixed dosing of pertuzumab in cancer patients based on population pharmacokinetic analysis. Pharm Res 2006; 23: 1275–84

    Article  PubMed  CAS  Google Scholar 

  50. Bruno R, Olivares R, Berille J, et al. Alpha-1-acid glycoprotein is an independent predictor of efficacy and survival in NSCLC patients treated with docetaxel [abstract]. Proc Am Soc Clin Oncol 1998; 17: 471A

    Google Scholar 

  51. Veyrat-Follet C, Bruno R, Olivares R, et al. Clinical trial simulation of docetaxel in patients with cancer as a tool for dosage optimization. Clin Pharmacol Ther 2000; 68: 677–87

    Article  PubMed  CAS  Google Scholar 

  52. de Jonge ME, Mathôt RAA, Van Dam SM, et al. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother Pharmacol 2002; 50: 251–5

    Article  PubMed  Google Scholar 

  53. Joerger M, Huitema ADR, Doodeman VD, et al. Epirubicin pharmacokineticspharmacodynamics and metabolic pathway-associated gene polymorphisms: significant influence of the novel UDP-glucuronosyltransferase 2B7 promoter mutation -66T>C [abstract no. 922; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  54. Timm R, Kaiser R, Lotsch J, et al. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J 2005; 5: 365–73

    Article  PubMed  CAS  Google Scholar 

  55. Bosch TM, Huitema AD, Doodeman VD, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006; 12: 5786–93

    Article  PubMed  CAS  Google Scholar 

  56. Xie H, Griskevicius L, Stahle L, et al. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 2006; 27: 54–61

    Article  PubMed  CAS  Google Scholar 

  57. Zandvliet AS, Huitema ADR, Copalu W, et al. CYP2C9 and CYP2C19 polymorphic forms are related to increased indisulam exposure and higher risk of severe hematologic toxicity. Clin Cancer Res 2007; 13: 2970–6

    Article  PubMed  CAS  Google Scholar 

  58. Huitema ADR, Mathôt RAA, Tibben MM, et al. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thiotepa and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn 2001; 28: 211–30

    Article  PubMed  CAS  Google Scholar 

  59. de Jonge ME, Huitema ADR, Rodenhuis S, et al. Integrated population pharmacokinetic model of both cyclophosphamide and thiotepa suggesting a mutual drug-drug interaction. J Pharmacokinet Pharmacodyn 2004; 31: 135–56

    Article  PubMed  Google Scholar 

  60. de Jonge ME, Huitema ADR, Holtkamp MJ, et al. Aprepitant inhibits cyclophosphamide bioactivation and thiotepa metabolism. Cancer Chemother Pharmacol 2005; 56: 370–8

    Article  PubMed  CAS  Google Scholar 

  61. Siegel-Lakhai WS, Zandvliet AS, Huitema ADR. A dose escalation study of indisulam in combination with capecitabine (Xeloda) in patients with solid tumors. Br J Cancer 2008; 98: 1320–6

    Article  PubMed  CAS  Google Scholar 

  62. Chatelut E, Canal P, Brunner V, et al. Prediction of carboplatin clearance from standard morphological and biological patient characteristics. J Natl Cancer Inst 1995; 87: 573–80

    Article  PubMed  CAS  Google Scholar 

  63. Chatelut E, Boddy AV, Peng B, et al. Population pharmacokinetics of carboplatin in children. Clin Pharmacol Ther 1996; 59: 436–43

    Article  PubMed  CAS  Google Scholar 

  64. Periclou AP, Avramis VI. NONMEM population pharmacokinetic studies of cytosine arabinoside after high-dose and after loading bolus followed by continuous infusion of the drug in pediatric patients with leukemias. Cancer Chemother Pharmacol 1996; 39: 42–50

    Article  PubMed  CAS  Google Scholar 

  65. Booth BP, Rahman A, Dagher R, et al. Population pharmacokinetic-based dosing of intravenous busulfan in pediatric patients. J Clin Pharmacol 2007; 47: 101–11

    Article  PubMed  CAS  Google Scholar 

  66. de Jonge ME, Huitema ADR, Tukker AC, et al. Accuracy, feasibility, and clinical impact of prospective Bayesian pharmacokinetically guided dosing of cyclophosphamide, thiotepa, and carboplatin in high-dose chemotherapy. Clin Cancer Res 2005; 11: 273–83

    PubMed  Google Scholar 

  67. de Jonge ME, van den Bongard HJ, Huitema ADR, et al. Bayesian pharmacokinetically guided dosing of paclitaxel in patients with non-small cell lung cancer. Clin Cancer Res 2004; 10: 2237–44

    Article  PubMed  Google Scholar 

  68. Rubie H, Doz F, Vassal G, et al. Individual dosing of carboplatin based on drug monitoring in children receiving high-dose chemotherapy. Eur J Cancer 2003; 39: 1433–8

    Article  PubMed  CAS  Google Scholar 

  69. Sandstrom M, Karlsson MO, Ljungman P, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Transplant 2001; 28: 657–64

    Article  PubMed  CAS  Google Scholar 

  70. Evans WE, Relling MV, Rodman JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998; 338: 499–505

    Article  PubMed  CAS  Google Scholar 

  71. de Jonge ME, Huitema ADR, Schellens JHM, et al. Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet 2005; 44: 147–73

    Article  PubMed  Google Scholar 

  72. Panetta JC, Wilkinson M, Pui CH, et al. Limited and optimal sampling strategies for etoposide and etoposide catechol in children with leukemia. J Pharmacokinet Pharmacodyn 2002; 29: 171–88

    Article  PubMed  CAS  Google Scholar 

  73. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm 1981; 9: 739–56

    PubMed  Google Scholar 

  74. Bruno R, Hille D, Riva A, et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 1998; 16: 187–96

    PubMed  CAS  Google Scholar 

  75. Batey MA, Wright JG, Azzabi A, et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38: 1081–9

    Article  PubMed  CAS  Google Scholar 

  76. Hassan M, Svensson US, Ljungman P, et al. A mechanism-based pharmacokineticenzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48: 669–77

    Article  PubMed  CAS  Google Scholar 

  77. de Jonge ME, Huitema ADR, Van Dam SM, et al. Population pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide, 2-dechloroethylcyclophosphamide, and phosphoramide mustard in a high-dose combination with thiotepa and carboplatin. Ther Drug Monit 2005; 27: 756–65

    Article  PubMed  Google Scholar 

  78. de Jonge ME, Huitema ADR, Van Dam SM, et al. Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin. Cancer Chemother Pharmacol 2005; 55: 507–10

    Article  PubMed  Google Scholar 

  79. de Jonge ME, Huitema ADR, Rodenhuis S, et al. Sparse sampling design for therapeutic drug monitoring of sequentially administered cyclophosphamide, thiotepa, and carboplatin (CTC). Ther Drug Monit 2005; 27: 393–402

    Article  PubMed  Google Scholar 

  80. Huitema ADR, Spaander M, Mathôt RAA, et al. Relationship between exposure and toxicity in high-dose chemotherapy with cyclophosphamide, thiotepa and carboplatin. Ann Oncol 2002; 13: 374–84

    Article  PubMed  CAS  Google Scholar 

  81. Llopis MC, Pérez-Ruixo JJ, Medina C, et al. Population pharmacokinetics of high dose of cyclophosphamide in high risk breast cancer patients [abstract no. 159; online]. Annual Meeting of the Population Approach Group in Europe; 1999 Jun 17–18; Saintes. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  82. Llopis MC, Pérez-Ruixo JJ, Casabó VG, et al. Population pharmacokinetic model for cyclophosphamide autoinduction in breast cancer patients [abstract no. 219; online]. Annual Meeting of the Population Approach Group in Europe; 2001 Jun 7–8; Basel. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  83. Qiu R, Yao A, Vicini P, et al. Diminishing the risk of nonrelapse mortality in hematopoietic stem cell transplantation: prediction of exposure to the cyclophosphamide metabolite carboxyethylphosphoramide mustard. Clin Pharmacol Ther 2004; 76: 270–80

    Article  PubMed  CAS  Google Scholar 

  84. McDonald GB, McCune JS, Batchelder A, et al. Metabolism-based cyclophosphamide dosing for hematopoietic cell transplant. Clin Pharmacol Ther 2005; 78: 298–308

    Article  PubMed  CAS  Google Scholar 

  85. Pérez-Ruixo JJ, Casabó VG, Merino M, et al. Population pharmacokinetic and pharmacodynamic of cyclophosphamide in breast cancer [abstract no. 126; online]. Annual Meeting of the Population Approach Group in Europe; 2000 Jun 15–16; Salamanca. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  86. Ramón-López A, Nalda-Molina R, Valenzuela B, et al. Semi-mechanistic KPD model for haematological toxicity in breast cancer patients receiving high dose of chemotherapy [abstract no. 1025; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  87. Wilde S, Jetter A, Zaigier M, et al. Population pharmacokinetics of cyclophosphamide, doxorubicin and etoposide in 30 patients with BEACOPP chemotherapy. Int J Clin Pharmacol Ther 2002; 40: 586–8

    PubMed  CAS  Google Scholar 

  88. Wilde S, Jetter A, Rietbrock S, et al. Population pharmacokinetics of the BEACOPP polychemotherapy regimen in Hodgkin’s lymphoma and its effect on myelotoxicity. Clin Pharmacokinet 2007; 46: 319–33

    Article  PubMed  CAS  Google Scholar 

  89. Ekhart C, Huitema A, Rodenhuis S, et al. Impact of polymorphisms in the CYP2B6 gene on the pharmacokinetics of cyclophosphamide and thiotepa [abstract no. 13062; online]. J Clin Oncol 2006; 24 (18S): ASCO Annual Meeting Proceedings Part I. Available from URL: http://www.asco.org/ASCO/Abstracts+%26+Virtual+Meeting/Abstracts [Accessed 2008 May 6]

    Article  Google Scholar 

  90. Sandstrom M, Freijs A, Larsson R, et al. Lack of relationship between systemic exposure for the component drug of the fluorouracil, epirubicin, and 4-hydroxycyclophosphamide regimen in breast cancer patients. J Clin Oncol 1996; 14: 1581–8

    PubMed  CAS  Google Scholar 

  91. Kerbusch T, Mathôt RAA, Keizer HJ, et al. Population pharmacokinetics and exploratory pharmacodynamics of ifosfamide and metabolites after a 72-hcontinuous infusion in patients with soft tissue sarcoma. Eur J Clin Pharmacol 2001; 57: 467–77

    Article  PubMed  CAS  Google Scholar 

  92. Freyer G, Ligneau B, Tranchand B, et al. The prognostic value of etoposide area under the curve (AUC) at first chemotherapy cycle in small cell lung cancer patients: a multicenter study of the groupe Lyon-Saint-Etienne d’Oncologie Thoracique (GLOT). Lung Cancer 2001; 31: 247–56

    Article  PubMed  CAS  Google Scholar 

  93. Di Marco MP, Wainer IW, Granvil CL, et al. New insights into the pharmacokinetics and metabolism of (R,S)-ifosfamide in cancer patients using a population pharmacokinetic-metabolism model. Pharm Res 2000; 17: 645–52

    Article  PubMed  Google Scholar 

  94. Kerbusch T, Jansen RL, Mathôt RAA, et al. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin. Clin Pharmacol Ther 2001; 70: 132–41

    Article  PubMed  CAS  Google Scholar 

  95. Kerbusch T, de Kraker J, Mathôt RAA, et al. Population pharmacokinetics of ifosfamide and its dechloroethylated and hydroxylated metabolites in children with malignant disease: a sparse sampling approach. Clin Pharmacokinet 2001; 40: 615–25

    Article  PubMed  CAS  Google Scholar 

  96. Kerbusch T, van Putten JW, Groen HJ, et al. Population pharmacokinetics of ifosfamide and its 2- and 3-dechloroethylated and 4-hydroxylated metabolites in resistant small-cell lung cancer patients. Cancer Chemother Pharmacol 2001; 48: 53–61

    Article  PubMed  CAS  Google Scholar 

  97. Mougenot P, Pinguet F, Fabbro M, et al. Population pharmacokinetics of melphalan, infused over a 24-hour period, in patients with advanced malignancies. Cancer Chemother Pharmacol 2004; 53: 503–12

    Article  PubMed  CAS  Google Scholar 

  98. Mougenot P, Fabbro M, Bressolle F, et al. Phase II study of melphalan as a singleagent infused over a 24-hour period with individual adapted dosing in patients with recurrent epithelial ovarian cancer. Oncol Rep 2006; 15: 237–41

    PubMed  Google Scholar 

  99. Nath CE, Shaw PJ, Montgomery K, et al. Population pharmacokinetics of melphalan in paediatric blood or marrow transplant recipients. Br J Clin Pharmacol 2007; 64: 151–64

    Article  PubMed  CAS  Google Scholar 

  100. Huitema ADR, Mathôt RAA, Tibben MM, et al. Population pharmacokinetics of thioTEPA and its active metabolite TEPA in patients undergoing high-dose chemotherapy. Br J Clin Pharmacol 2001; 51: 61–70

    Article  PubMed  CAS  Google Scholar 

  101. de Jonge ME, Mathôt RA, Dalesio O, et al. Relationship between irreversible alopecia and exposure to cyclophosphamide, thiotepa and carboplatin (CTC) in high-dose chemotherapy. Bone Marrow Transplant 2002; 30: 593–7

    Article  PubMed  Google Scholar 

  102. Huitema ADR, Mathôt RAA, Tibben MM, et al. Validation of a therapeutic drug monitoring strategy for thiotepa in a high-dose chemotherapy regimen. Ther Drug Monit 2001; 23: 650–7

    Article  PubMed  CAS  Google Scholar 

  103. Bleyzac N, Souillet G, Magron P, et al. Improved clinical outcome of paediatric bone marrow recipients using a test dose and Bayesian pharmacokinetic individualization of busulfan dosage regimens. Bone Marrow Transplant 2001; 28: 743–51

    Article  PubMed  CAS  Google Scholar 

  104. Nguyen L, Fuller D, Lennon S, et al. IV busulfan in pediatrics: a novel dosing to improve safety/efficacy for hematopoietic progenitor cell transplantation recipients. Bone Marrow Transplant 2004; 33: 979–87

    Article  PubMed  CAS  Google Scholar 

  105. Schiltmeyer B, Klingebiel T, Schwab M, et al. Population pharmacokinetics of oral busulfan in children. Cancer Chemother Pharmacol 2003; 52: 209–16

    Article  PubMed  CAS  Google Scholar 

  106. Takama H, Tanaka H, Nakashima D, et al. Population pharmacokinetics of intravenous busulfan in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2006; 37: 345–51

    Article  PubMed  CAS  Google Scholar 

  107. Nguyen L, Leger F, Lennon S, et al. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol 2006; 57: 191–8

    Article  PubMed  CAS  Google Scholar 

  108. Hassan M, Fasth A, Gerritsen B, et al. Busulphan kinetics and limited sampling model in children with leukemia and inherited disorders. Bone Marrow Transplant 1996; 18: 843–50

    PubMed  CAS  Google Scholar 

  109. Bertholle-Bonnet V, Bleyzac N, Galambrun C, et al. Influence of underlying disease on busulfan disposition in pediatric bone marrow transplant recipients: a nonparametric population pharmacokinetic study. Ther Drug Monit 2007; 29: 177–84

    Article  PubMed  CAS  Google Scholar 

  110. Urien S, Alexandre J, Raymond E, et al. Phase I population pharmacokinetics of irofulven. Anticancer Drugs 2003; 14: 353–8

    Article  PubMed  CAS  Google Scholar 

  111. Van Ruth S, Mathôt RAA, Sparidans RW, et al. Population pharmacokinetics and pharmacodynamics of mitomycin during intraoperative hyperthermic intraperitoneal chemotherapy. Clin Pharmacokinet 2004; 43: 131–43

    Article  PubMed  Google Scholar 

  112. McLeod HL, Graham MA, Aamdal S, et al. Phase I pharmacokinetics and limited sampling strategies for the bioreductive alkylating drug EO9. EORTC Early Clinical Trials Group. Eur J Cancer 1996; 32A: 1518–22

    Article  PubMed  CAS  Google Scholar 

  113. Schellens JHM, Dombernowsky P, Cassidy J, et al. Population pharmacokinetics and dynamics in phase II studies of the novel bioreductive alkylating cytotoxic indoloquinone EO9. Anticancer Drugs 2001; 12: 583–90

    Article  PubMed  CAS  Google Scholar 

  114. Panetta JC, Kirstein MN, Gajjar A, et al. Population pharmacokinetics of temozolomide and metabolites in infants and children with primary central nervous system tumors. Cancer Chemother Pharmacol 2003; 52: 435–41

    Article  PubMed  CAS  Google Scholar 

  115. Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 2004; 10: 3728–36

    Article  PubMed  CAS  Google Scholar 

  116. Gallo JM, Vicini P, Orlansky A, et al. Pharmacokinetic model-predicted anticancer drug concentrations in human tumors. Clin Cancer Res 2004; 10: 8048–58

    Article  PubMed  CAS  Google Scholar 

  117. Jen JF, Cutler DL, Pai SM, et al. Population pharmacokinetics of temozolomide in cancer patients. Pharm Res 2000; 17: 1284–9

    Article  PubMed  CAS  Google Scholar 

  118. Bourhis Y, Iliadis A, Lucas C, et al. Population pharmacokinetic study of fotemustine [abstract no. 407; online]. Annual Meeting of the Population Approach Group in Europe; 2003 Jun 12–13; Verona. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  119. Benezet S, Guimbaud R, Chatelut E, et al. How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 1997; 8: 607–9

    Article  PubMed  CAS  Google Scholar 

  120. Huitema ADR, Mathôt RAA, Tibben MM, et al. Validation of techniques for the prediction of carboplatin exposure: application of Bayesian methods. Clin Pharmacol Ther 2000; 67: 621–30

    Article  PubMed  CAS  Google Scholar 

  121. Chatelut E, Pivot X, Otto J, et al. A limited sampling strategy for determining carboplatin AUC and monitoring drug dosage. Eur J Cancer 2000; 36: 264–9

    Article  PubMed  CAS  Google Scholar 

  122. Doz F, Urien S, Chatelut E, et al. A limited-sampling method for evaluation of the area under the curve of ultrafilterable carboplatin in children. Cancer Chemother Pharmacol 1998; 42: 250–4

    Article  PubMed  CAS  Google Scholar 

  123. Duffull SB, Begg EJ, Robinson BA, et al. A sequential Bayesian algorithm for dose individualisation of carboplatin. Cancer Chemother Pharmacol 1997; 39: 317–26

    Article  PubMed  CAS  Google Scholar 

  124. Ekhart C, de Jonge ME, Huitema AD, et al. Flat dosing of carboplatin is justified in adult patients with normal renal function. Clin Cancer Res 2006; 12: 6502–8

    Article  PubMed  CAS  Google Scholar 

  125. Guillet P, Monjanel S, Nicoara A, et al. A Bayesian dosing method for carboplatin given by continuous infusion for 120 h. Cancer Chemother Pharmacol 1997; 40: 143–9

    Article  PubMed  CAS  Google Scholar 

  126. Johansen MJ, Madden T, Mehra RC, et al. Phase I pharmacokinetic study of multicycle high-dose carboplatin followed by peripheral-blood stem-cell infusion in patients with cancer. J Clin Oncol 1997; 15: 1481–91

    PubMed  CAS  Google Scholar 

  127. Leger F, Seronie-Vivien S, Makdessi J, et al. Impact of the biochemical assay for serum creatinine measurement on the individual carboplatin dosing: a prospective study. Eur J Cancer 2002; 38: 52–6

    Article  PubMed  CAS  Google Scholar 

  128. Kloft C, Siegert W, Jaehde U. Individualised dosing strategy for high-dose carboplatin in patients with germ cell cancer. Br J Cancer 2003; 89: 787–94

    Article  PubMed  CAS  Google Scholar 

  129. Patoux A, Bleyzac N, Boddy AV, et al. Comparison of nonlinear mixed-effect and non-parametric expectation maximisation modelling for Bayesian estimation of carboplatin clearance in children. Eur J Clin Pharmacol 2001; 57: 297–303

    Article  PubMed  CAS  Google Scholar 

  130. Peng B, Boddy AV, Cole M, et al. Comparison of methods for the estimation of carboplatin pharmacokinetics in paediatric cancer patients. Eur J Cancer 1995; 31A: 1804–10

    Article  PubMed  CAS  Google Scholar 

  131. Shen M, Schilder RJ, Obasaju C, et al. Population pharmacokinetic and limited sampling models for carboplatin administered in high-dose combination regimens with peripheral blood stem cell support. Cancer Chemother Pharmacol 2002; 50: 243–50

    Article  PubMed  CAS  Google Scholar 

  132. Thomas F, Seronie-Vivien S, Gladieff L, et al. Cystatin C as a new covariate to predict renal elimination of drugs: application to carboplatin. Clin Pharmacokinet 2005; 44: 1305–16

    Article  PubMed  CAS  Google Scholar 

  133. Wright JG, Boddy AV, Highley M, et al. Estimation of glomerular filtration rate in cancer patients. Br J Cancer 2001; 84: 452–9

    Article  PubMed  CAS  Google Scholar 

  134. Urien S, Doz F, Namouni F, et al. Pharmacokinetic modelling of total and unbound plasma carboplatin: a population study in 75 children. Int J Clin Pharmacol Ther 2002; 40: 270–8

    PubMed  CAS  Google Scholar 

  135. de Jongh FE, Gallo JM, Shen M, et al. Population pharmacokinetics of cisplatin in adult cancer patients. Cancer Chemother Pharmacol 2004; 54: 105–12

    Article  PubMed  Google Scholar 

  136. Hanada K, Nishijima K, Ogata H, et al. Population pharmacokinetic analysis of cisplatin and its metabolites in cancer patients: possible misinterpretation of covariates for pharmacokinetic parameters calculated from the concentrations of unchanged cisplatin, ultrafiltered platinum and total platinum. Jpn J Clin Oncol 2001; 31: 179–84

    Article  PubMed  CAS  Google Scholar 

  137. Johnsson A, Hoglund P, Grubb A, et al. Cisplatin pharmacokinetics and pharmacodynamics in patients with squamous-cell carcinoma of the head/neck or esophagus. Cancer Chemother Pharmacol 1996; 39: 25–33

    Article  PubMed  CAS  Google Scholar 

  138. Monjanel-Mouterde S, Ciccolini J, Bagarry D, et al. Population pharmacokinetics of cisplatin after 120-h infusion: application to routine adaptive control with feedback. J Clin Pharm Ther 2003; 28: 109–16

    Article  PubMed  CAS  Google Scholar 

  139. Nagai N, Ogata H, Wada Y, et al. Population pharmacokinetics and pharmacodynamics of cisplatin in patients with cancer: analysis with the NONMEM program. J Clin Pharmacol 1998; 38: 1025–34

    Article  PubMed  CAS  Google Scholar 

  140. Panteix G, Beaujard A, Garbit F, et al. Population pharmacokinetics of cisplatin in patients with advanced ovarian cancer during intraperitoneal hyperthermia chemotherapy. Anticancer Res 2002; 22: 1329–36

    PubMed  CAS  Google Scholar 

  141. Urien S, Brain E, Bugat R, et al. Pharmacokinetics of platinum after oral or intravenous cisplatin: a phase 1 study in 32 adult patients. Cancer Chemother Pharmacol 2003; 55: 55–60

    Article  CAS  Google Scholar 

  142. Ishibashi T, Yano Y, Oguma T. Population pharmacokinetics of platinum after nedaplatin administration and model validation in adult patients. Br J Clin Pharmacol 2003; 56: 205–13

    Article  PubMed  CAS  Google Scholar 

  143. Bastian G, Barrail A, Urien S. Population pharmacokinetics of oxaliplatin in patients with metastatic cancer. Anticancer Drugs 2003; 14: 817–24

    Article  PubMed  CAS  Google Scholar 

  144. Delord JP, Umlil A, Guimbaud R, et al. Population pharmacokinetics of oxaliplatin. Cancer Chemother Pharmacol 2003; 51: 127–31

    PubMed  CAS  Google Scholar 

  145. Kho Y, Jansman FG, Prins NH, et al. Population pharmacokinetics of oxaliplatin (85 mg/m2) in combination with 5-fluorouracil in patients with advanced colorectal cancer. Ther Drug Monit 2006; 28: 206–11

    Article  PubMed  CAS  Google Scholar 

  146. Terret C, Erdociain E, Guimbaud R, et al. Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin Pharmacol Ther 2000; 68: 270–9

    Article  PubMed  CAS  Google Scholar 

  147. Climente-Marti M, Merino-Sanjuan M, Almenar-Cubells D, et al. A Bayesian method for predicting 5-fluorouracil pharmacokinetic parameters following short-term infusion in patients with colorectal cancer. J Pharm Sci 2003; 92: 1155–65

    Article  PubMed  CAS  Google Scholar 

  148. Etienne MC, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion: a NONMEM analysis. Eur J Cancer 1998; 34: 92–7

    Article  PubMed  CAS  Google Scholar 

  149. Joel SP, Papamichael D, Richards F, et al. Lack of pharmacokinetic interaction between 5-fluorouracil and oxaliplatin. Clin Pharmacol Ther 2004; 76: 45–54

    Article  PubMed  CAS  Google Scholar 

  150. Ychou M, Duffour J, Kramar A, et al. Individual 5-FU dose adaptation in metastatic colorectal cancer: results of a phase II study using a bimonthly pharmacokinetically intensified LV5FU2 regimen. Cancer Chemother Pharmacol 2003; 52: 282–90

    Article  PubMed  CAS  Google Scholar 

  151. Shepard DR, Mani S, Kastrissios H, et al. Estimation of the effect of food on the disposition of oral 5-fluorouracil in combination with eniluracil. Cancer Chemother Pharmacol 2002; 49: 398–402

    Article  PubMed  CAS  Google Scholar 

  152. Della Pepa C, Costa M, Canaparo R, et al. Analysis of 5-FU and three metabolites concentration in plasma cancer patients by Bayesian autoclassification method [abstract no. 98; online]. Annual Meeting of the Population Approach Group in Europe; 2000 Jun 15–16; Salamanca. Available from URL: http://www.pagemeeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  153. Blesch KS, Gieschke R, Tsukamoto Y, et al. Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest New Drugs 2003; 21: 195–223

    Article  PubMed  CAS  Google Scholar 

  154. Gieschke R, Reigner B, Blesch KS, et al. Population pharmacokinetic analysis of the major metabolites of capecitabine. J Pharmacokinet Pharmacodyn 2002; 29: 25–47

    Article  PubMed  CAS  Google Scholar 

  155. Gieschke R, Burger HU, Reigner B, et al. Population pharmacokinetics and concentration-effect relationships of capecitabine metabolites in colorectal cancer patients. Br J Clin Pharmacol 2003; 55: 252–63

    Article  PubMed  CAS  Google Scholar 

  156. Hénin E, Trillet-Lenoir V, Colomban O, et al. Estimation of patient compliance from pharmacokinetic samples [abstract no. 1193; online]. Annual Meeting of the Population Approach Group in Europe; 2007 Jun 13–15; Copenhagen. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  157. Comets E, Ikeda K, Hoff P, et al. Comparison of the pharmacokinetics of S-1, an oral anticancer agent, in western and Japanese patients. J Pharmacokinet Pharmacodyn 2003; 30: 257–83

    Article  PubMed  CAS  Google Scholar 

  158. Urien S, Fumoleau P, Campone M, et al. Modelling of ftorafur and 5-fluorouracil pharmacokinetics following oral UFT administration: a population study in 30 patients with advanced breast cancer. Cancer Chemother Pharmacol 2003; 52: 99–107

    Article  PubMed  CAS  Google Scholar 

  159. Aquerreta I, Aldaz A, Giraldez J, et al. Pharmacodynamics of high-dose methotrexate in pediatric patients. Ann Pharmacother 2002; 36: 1344–50

    Article  PubMed  CAS  Google Scholar 

  160. Piard C, Bressolle F, Fakhoury M, et al. A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia [published erratum appears in Cancer Chemother Pharmacol 2007; 60: 621]. Cancer Chemother Pharmacol 2007; 60: 609–20

    Article  PubMed  CAS  Google Scholar 

  161. Aumente D, Buelga DS, Lukas JC, et al. Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet 2006; 45: 1227–38

    Article  PubMed  CAS  Google Scholar 

  162. Aquerreta I, Aldaz A, Giraldez J, et al. Methotrexate pharmacokinetics and survival in osteosarcoma. Pediatr Blood Cancer 2004; 42: 52–8

    Article  PubMed  Google Scholar 

  163. Joerger M, Huitema ADR, van den Bongard HJ, et al. Determinants of the elimination of methotrexate and 7-hydroxy-methotrexate following high-dose infusional therapy to cancer patients. Br J Clin Pharmacol 2006; 62: 71–80

    Article  PubMed  CAS  Google Scholar 

  164. Bruno R, Iliadis A, Favre R, et al. Dosage predictions in high-dose methotrexate infusions: part 2. Bayesian estimation of methotrexate clearance. Cancer Drug Deliv 1985; 2: 277–83

    Article  PubMed  CAS  Google Scholar 

  165. Faltaos DW, Hulot JS, Urien S, et al. Population pharmacokinetic study of methotrexate in patients with lymphoid malignancy. Cancer Chemother Pharmacol 2006; 58: 626–33

    Article  PubMed  CAS  Google Scholar 

  166. Iliadis A, Bachir-Raho M, Bruno R, et al. Bayesian estimation and prediction of clearance in high-dose methotrexate infusions. J Pharmacokinet Biopharm 1985; 13: 101–15

    PubMed  CAS  Google Scholar 

  167. Rousseau A, Sabot C, Delepine N, et al. Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma. Clin Pharmacokinet 2002; 41: 1095–104

    Article  PubMed  CAS  Google Scholar 

  168. Odoul F, Le Guellec C, Lamagnere JP, et al. Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 1999; 13: 595–604

    Article  PubMed  CAS  Google Scholar 

  169. Monjanel-Mouterde S, Lejeune C, Ciccolini J, et al. Bayesian population model of methotrexate to guide dosage adjustments for folate rescue in patients with breast cancer. J Clin Pharm Ther 2002; 27: 189–95

    Article  PubMed  CAS  Google Scholar 

  170. Sabot C, Debord J, Roullet B, et al. Comparison of 2- and 3-compartment models for the Bayesian estimation of methotrexate pharmacokinetics. Int J Clin Pharmacol Ther 1995; 33: 164–9

    PubMed  CAS  Google Scholar 

  171. Testart D, Girard P, Droz JP, et al. PK-PD model compared with K-PD model to predict haematotoxicity induced by anticancer drugs [abstract no. 695; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  172. Latz JE, Chaudhary A, Ghosh A, et al. Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol 2006; 57: 401–11

    Article  PubMed  Google Scholar 

  173. Latz JE, Rusthoven JJ, Karlsson MO, et al. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 2006; 57: 427–35

    Article  PubMed  Google Scholar 

  174. Ouellet D, Periclou AP, Johnson RD, et al. Population pharmacokinetics of pemetrexed disodium (ALIMTA) in patients with cancer. Cancer Chemother Pharmacol 2000; 46: 227–34

    Article  PubMed  CAS  Google Scholar 

  175. Blair EY, Rivory LP, Clarke SJ, et al. Population pharmacokinetics of raltitrexed in patients with advanced solid tumours. Br J Clin Pharmacol 2004; 57: 416–26

    Article  PubMed  CAS  Google Scholar 

  176. Lee CK, Rowinsky EK, Li J, et al. Population pharmacokinetics of troxacitabine, a novel dioxolane nucleoside analogue. Clin Cancer Res 2006; 12: 2158–65

    Article  PubMed  CAS  Google Scholar 

  177. Delaloge S, Llombart A, Di Palma M, et al. Gemcitabine in patients with solid tumors and renal impairment: a pharmacokinetic phase I study. Am J Clin Oncol 2004; 7: 289–93

    Article  CAS  Google Scholar 

  178. Ortega A, Aldaz A, Giraldez J, et al. Population pharmacokinetic parameters of gentamicin in patients with solid tumors: estimation by one- and two-stage methods. Ther Drug Monit 1998; 20: 184–90

    Article  PubMed  CAS  Google Scholar 

  179. Bonate PL, Craig A, Gaynon P, et al. Population pharmacokinetics of clofarabine, a second-generation nucleoside analog, in pediatric patients with acute leukemia. J Clin Pharmacol 2004; 44: 1309–22

    Article  PubMed  CAS  Google Scholar 

  180. Lindemalm S, Savic RM, Karlsson MO, et al. Application of population pharmacokinetics to cladribine. BMC Pharmacol 2005; 5: 4

    Article  PubMed  CAS  Google Scholar 

  181. Tracewell WG, Trump DL, Vaughan WP, et al. Population pharmacokinetics of hydroxyurea in cancer patients. Cancer Chemother Pharmacol 1995; 35: 417–22

    Article  PubMed  CAS  Google Scholar 

  182. Gauvin A, Pinguet F, Culine S, et al. Bayesian estimate of vinorelbine pharmacokinetic parameters in elderly patients with advanced metastatic cancer. Clin Cancer Res 2000; 6: 2690–5

    PubMed  CAS  Google Scholar 

  183. Deporte-Fety R, Simon N, Fumoleau P, et al. Population pharmacokinetics of short intravenous vinorelbine infusions in patients with metastatic breast cancer. Cancer Chemother Pharmacol 2004; 53: 233–8

    Article  PubMed  CAS  Google Scholar 

  184. Gauvin A, Pinguet F, Culine S, et al. Blood and plasma pharmacokinetics of vinorelbine in elderly patients with advanced metastatic cancer. Cancer Chemother Pharmacol 2002; 49: 48–56

    Article  PubMed  CAS  Google Scholar 

  185. Nguyen L, Tranchand B, Puozzo C, et al. Population pharmacokinetics model and limited sampling strategy for intravenous vinorelbine derived from phase I clinical trials. Br J Clin Pharmacol 2002; 53: 459–68

    Article  PubMed  CAS  Google Scholar 

  186. Puisset F, Dalenc F, Chatelut E, et al. Dexamethasone as a probe for vinorelbine clearance. Br J Clin Pharmacol 2005; 60: 45–53

    Article  PubMed  CAS  Google Scholar 

  187. Wong M, Balleine RL, Blair EY, et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J Clin Oncol 2006; 24: 2448–55

    Article  PubMed  CAS  Google Scholar 

  188. Puozzo C, Gridelli C. Non-small-cell lung cancer in elderly patients: influence of age on vinorelbine oral pharmacokinetics. Clin Lung Cancer 2004; 5: 237–42

    Article  PubMed  CAS  Google Scholar 

  189. Sabot C, Marquet P, Debord J, et al. Bayesian pharmacokinetic estimation of vinorelbine in non-small-cell lung cancer patients. Eur J Clin Pharmacol 1998; 54: 171–5

    Article  PubMed  CAS  Google Scholar 

  190. Variol P, Nguyen L, Tranchand B, et al. A simultaneous oral/intravenous population pharmacokinetic model for vinorelbine. Eur J Clin Pharmacol 2002; 58: 467–76

    Article  PubMed  CAS  Google Scholar 

  191. Gauvin A, Pinguet F, Culine S, et al. A limited-sampling strategy to estimate individual pharmacokinetic parameters of vinorelbine in elderly patients with advanced metastatic cancer. Anticancer Drugs 2002; 13: 473–80

    Article  PubMed  CAS  Google Scholar 

  192. Callies S, de Alwis DP, Harris A, et al. A population pharmacokinetic model for paclitaxel in the presence of a novel P-gp modulator, zosuquidar trihydrochloride (LY335979). Br J Clin Pharmacol 5 2003; 6: 46–56

    Article  Google Scholar 

  193. de Jonge ME, Huitema ADR, Schellens JHM, et al. Population pharmacokinetics of orally administered paclitaxel formulated in Cremophor EL. Br J Clin Pharmacol 2005; 59: 325–34

    Article  PubMed  CAS  Google Scholar 

  194. Hempel G, Rube C, Mosler C, et al. Population pharmacokinetics of low-dose paclitaxel in patients with brain tumors. Anticancer Drugs 2003; 14: 417–22

    Article  PubMed  CAS  Google Scholar 

  195. Henningsson A, Sparreboom A, Sandstrom M, et al. Population pharmacokinetic modelling of unbound and total plasma concentrations of paclitaxel in cancer patients. Eur J Cancer 2003; 39: 1105–14

    Article  PubMed  CAS  Google Scholar 

  196. Mould DR, Fleming GF, Darcy KM, et al. Population analysis of a 24-h paclitaxel infusion in advanced endometrial cancer: a gynaecological oncology group study. Br J Clin Pharmacol 2006; 62: 56–70

    Article  PubMed  CAS  Google Scholar 

  197. Henningsson A, Marsh S, Loos WJ, et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11: 8097–104

    Article  PubMed  CAS  Google Scholar 

  198. van den Bongard HJGD, Mathôt RAA, van Tellingen O, et al. A population analysis of the pharmacokinetics of Cremophor EL using nonlinear mixedeffect modelling. Cancer Chemother Pharmacol 2002; 50: 16–24

    Article  PubMed  CAS  Google Scholar 

  199. Henningsson A, Sparreboom A, Loos WJ, et al. Population pharmacokinetic model for Cremophor EL [abstract no. 770; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  200. Joerger M, Huitema ADR, van den Bongard DH, et al. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of paclitaxel in patients with solid tumors. Clin Cancer Res 2006; 12: 2150–7

    Article  PubMed  CAS  Google Scholar 

  201. Karlsson MO, Molnar V, Bergh J, et al. A general model for time-dissociated pharmacokinetic-pharmacodynamic relationship exemplified by paclitaxel myelosuppression. Clin Pharmacol Ther 1998; 63: 11–25

    Article  PubMed  CAS  Google Scholar 

  202. Kruijtzer CM, Schellens JHM, Mezger J, et al. Phase II and pharmacologic study of weekly oral paclitaxel plus cyclosporine in patients with advanced non-small-cell lung cancer. J Clin Oncol 2002; 20: 4508–16

    Article  PubMed  CAS  Google Scholar 

  203. Seiden MV, Swenerton KD, Matulonis U, et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 2002; 86: 302–10

    Article  PubMed  CAS  Google Scholar 

  204. van Zuylen L, Karlsson MO, Verweij J, et al. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 2001; 47: 309–18

    Article  PubMed  CAS  Google Scholar 

  205. Rebattu P, Quantin X, Ardiet C, et al. Dose-finding, pharmacokinetic and phase II study of docetaxel in combination with gemcitabine in patients with inoperable non-small cell lung cancer. Lung Cancer 2001; 33: 277–87

    Article  PubMed  CAS  Google Scholar 

  206. Bailie P, Bruno R, Schellens JHM, et al. Optimal sampling strategies for bayesian estimation of docetaxel (Taxotere) clearance. Clin Cancer Res 1997; 3: 1535–8

    Google Scholar 

  207. Bruno R, Sanderink GJ. Pharmacokinetics and metabolism of Taxotere (docetaxel). Cancer Surv 1993; 17: 305–13

    PubMed  CAS  Google Scholar 

  208. Bruno R, Hille D, Thomas L, et al. Population pharmacokinetics/pharmacodynamics (PK/PD) of docetaxel (Taxotere) in phase II studies [abstract]. Proc Am Soc Clin Oncol 1995; 14: 1471

    Google Scholar 

  209. Bruno R, Vivler N, Vergniol JC, et al. A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm 1996; 24: 153–72

    PubMed  CAS  Google Scholar 

  210. Bruno R, Vivier N, Veyrat-Follet C, et al. Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel. Invest New Drugs 2001; 19: 163–9

    Article  PubMed  CAS  Google Scholar 

  211. Dubey S, Hutson P, Alberti D, et al. Phase I study of docetaxel and topotecan in patients with advanced malignancies. J Oncol Pharm Pract 2005; 11: 131–8

    Article  PubMed  CAS  Google Scholar 

  212. Freyer G, Hennebert P, Awada A, et al. Influence of amifostine on the toxicity and pharmacokinetics of docetaxel in metastatic breast cancer patients: a pilot study. Clin Cancer Res 2002; 8: 95–102

    PubMed  CAS  Google Scholar 

  213. Hooker A, Ten Tije AJ, Carducci MA, et al. Population pharmacokinetic modeling of total and unbound docetaxel plasma concentrations in cancer patients with poor liver function [abstract no. 815; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  214. Launay-Iliadis MC, Bruno R, Cosson V, et al. Population pharmacokinetics of docetaxel during phase I studies using nonlinear mixed-effect modeling and nonparametric maximum-likelihood estimation. Cancer Chemother Pharmacol 1995 37: 47–54

    Article  PubMed  CAS  Google Scholar 

  215. Puisset F, Chatelut E, Dalenc F, et al. Dexamethasone as a probe for docetaxel clearance. Cancer Chemother Pharmacol 2004; 54: 265–72

    Article  PubMed  CAS  Google Scholar 

  216. Slaviero KA, Clarke SJ, McLachlan AJ, et al. Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br J Clin Pharmacol 2004; 57: 44–53

    Article  PubMed  CAS  Google Scholar 

  217. Stevenson JP, Sun W, Gallagher M, et al. Phase I trial of the cryptophycin analogue LY355703 administered as an intravenous infusion on a day 1 and 8 schedule every 21 days. Clin Cancer Res 2002; 8: 2524–9

    PubMed  CAS  Google Scholar 

  218. Ane C, Concordet D. Population pharmacokinetics/pharmacodynamics relationships of an anticancer drug. Stat Med 2003; 22: 833–46

    Article  PubMed  Google Scholar 

  219. Boucaud M, Pinguet F, Culine S, et al. Modeling plasma and saliva topotecan concentration time course using a population approach. Oncol Res 2003; 13: 211–9

    PubMed  Google Scholar 

  220. Gallo JM, Laub PB, Rowinsky EK, et al. Population pharmacokinetic model for topotecan derived from phase I clinical trials. J Clin Oncol 2000; 18: 2459–67

    PubMed  CAS  Google Scholar 

  221. Freeman BB, Iacono LC, Panetta JC, et al. Using plasma topotecan pharmacokinetics to estimate topotecan exposure in cerebrospinal fluid of children with medulloblastoma. Neuro Oncol 2006; 8: 89–95

    Article  PubMed  CAS  Google Scholar 

  222. Leger F, Loos WJ, Fourcade J, et al. Factors affecting pharmacokinetic variability of oral topotecan: a population analysis. Br J Cancer 2004; 90: 343–7

    Article  PubMed  CAS  Google Scholar 

  223. Montazeri A, Boucaud M, Lokiec F, et al. Population pharmacokinetics of topotecan: intraindividual variability in total drug. Cancer Chemother Pharmacol 2000; 46: 375–81

    Article  PubMed  CAS  Google Scholar 

  224. Hoppe A, Seronie-Vivien S, Thomas F, et al. Serum cystatin C is a better marker of topotecan clearance than serum creatinine. Clin Cancer Res 2005; 11: 3038–44

    Article  PubMed  CAS  Google Scholar 

  225. Turner PK, Iacono LC, Panetta JC, et al. Development and validation of limited sampling models for topotecan lactone pharmacokinetic studies in children. Cancer Chemother Pharmacol 2006; 57: 475–82

    Article  PubMed  CAS  Google Scholar 

  226. Zamboni WC, D’Argenio DZ, Stewart CF, et al. Pharmacodynamic model of topotecan-induced time course of neutropenia. Clin Cancer Res 2001; 7: 2301–8

    PubMed  CAS  Google Scholar 

  227. Bosch TM, Huitema ADR, Doodeman VD, et al. Pharmacogenetic screening in relation to population pharmacokinetics of irinotecan. In: Bosch TM. Pharmacogenetic screening of docetaxel, irinotecan and fluoropyrimidines in cancer therapy [thesis]. Utrecht: University of Utrecht, 2006

    Google Scholar 

  228. Klein CE, Gupta E, Reid JM, et al. Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther 2002; 72: 638–47

    Article  PubMed  CAS  Google Scholar 

  229. Nakashima H, Lieberman R, Karato A, et al. Efficient sampling strategies for forecasting pharmacokinetic parameters of irinotecan (CPT-11): implication for area under the concentration-time curve monitoring. Ther Drug Monit 1995; 17: 221–9

    Article  PubMed  CAS  Google Scholar 

  230. Yamamoto N, Tamura T, Karato A, et al. CPT-11: population pharmacokinetic model and estimation of pharmacokinetics using the Bayesian method in patients with lung cancer. Jpn J Cancer Res 1994; 85: 972–7

    Article  PubMed  CAS  Google Scholar 

  231. Xie R, Mathijssen RH, Sparreboom A, et al. Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol 2002; 20: 3293–301

    Article  PubMed  CAS  Google Scholar 

  232. Schoemaker NE, Mathôt RA, Schoffski P, et al. Development of an optimal pharmacokinetic sampling schedule for rubitecan administered orally in a daily times five schedule. Cancer Chemother Pharmacol 2002; 50: 514–7

    Article  PubMed  CAS  Google Scholar 

  233. Schellens JHM, Heinrich B, Lehnert M, et al. Population pharmacokinetic and dynamic analysis of the topoisomerase I inhibitor lurtotecan in phase II studies. Invest New Drugs 2002; 20: 83–93

    Article  PubMed  CAS  Google Scholar 

  234. Freyer G, Tranchand B, Ligneau B, et al. Population pharmacokinetics of doxorubicin, etoposide and ifosfamide in small cell lung cancer patients: results of a multicentre study. Br J Clin Pharmacol 2000; 50: 315–24

    Article  PubMed  CAS  Google Scholar 

  235. Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004; 22: 1078–86

    Article  PubMed  CAS  Google Scholar 

  236. Cole M, Newell DR, Pearson AD, et al. Population pharmacokinetics of etoposide in children [abstract no. 593; online]. Annual Meeting of the Population Approach Group in Europe; 1997 Jun 23–24; Glasgow. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  237. Ciccolini J, Monjanel-Mouterde S, Bun SS, et al. Population pharmacokinetics of etoposide: application to therapeutic drug monitoring. Ther Drug Monit 2002; 24: 709–14

    Article  PubMed  CAS  Google Scholar 

  238. Lacayo NJ, Lum BL, Becton DL, et al. Pharmacokinetic interactions of cyclosporine with etoposide and mitoxantrone in children with acute myeloid leukemia. Leukemia 2002; 16: 920–7

    Article  PubMed  CAS  Google Scholar 

  239. Masson E, Fuseau E, Cosson V. Efficiency of using population pharmacokinetics to demonstrate bioequivalence with sparse sampling in cancer patients: a trial simulation with etoposide [abstract no. 330; online]. Annual Meeting of the Population Approach Group in Europe; 2002 Jun 6–7; Paris. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  240. Nguyen L, Chatelut E, Chevreau C, et al. Population pharmacokinetics of total and unbound etoposide. Cancer Chemother Pharmacol 1998; 41: 125–32

    Article  PubMed  CAS  Google Scholar 

  241. Perdaems N, Bachaud JM, Rouzaud P, et al. Relation between unbound plasma concentrations and toxicity in a prolonged oral etoposide schedule. Eur J Clin Pharmacol 1998; 54: 677–83

    Article  PubMed  CAS  Google Scholar 

  242. Toffoli G, Corona G, Sorio R, et al. Population pharmacokinetics and pharmacodynamics of oral etoposide. Br J Clin Pharmacol 2001; 52: 511–9

    Article  PubMed  CAS  Google Scholar 

  243. Wurthwein G, Klingebiel T, Krumpelmann S, et al. Population pharmacokinetics of high-dose etoposide in children receiving different conditioning regimens. Anticancer Drugs 2002; 13: 101–10

    Article  PubMed  CAS  Google Scholar 

  244. Wurthwein G, Krumpelmann S, Tillmann B, et al. Population pharmacokinetic approach to compare oral and IV administration of etoposide. Anticancer Drugs 1999; 10: 807–14

    Article  PubMed  CAS  Google Scholar 

  245. Wallin JE, Friberg LE, Karlsson MO. An adaptive dosing tool for etoposide using neutrophil counts based on a semi-physiological model [abstract no. 966; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  246. Reif S, Jetter A, Fuhr U, et al. Population pharmacokinetics of etoposide. Int J Clin Pharmacol Ther 40: 578–579, 2002

    PubMed  CAS  Google Scholar 

  247. Rodman JH, Abromowitch M, Sinkule JA, et al. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a phase I trial. J Clin Oncol 1987; 5: 1007–14

    PubMed  CAS  Google Scholar 

  248. D’Argenio DZ, Rodman JH. Targeting the systemic exposure of teniposide in the population and the individual using a stochastic therapeutic objective. J Pharmacokinet Biopharm 1993; 21: 223–51

    PubMed  Google Scholar 

  249. Chanu P, Tranchand B, Robert J. Population pharmacokinetics of epirubicin and its main metabolite epirubicinol using NONMEM [abstract no. 299; online]. Annual Meeting of the Population Approach Group in Europe; 2002 Jun 6–7; Paris. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  250. Ralph LD, Thomson AH, Dobbs NA, et al. A population model of epirubicin pharmacokinetics and application to dosage guidelines. Cancer Chemother Pharmacol 2003; 52: 34–40

    Article  PubMed  CAS  Google Scholar 

  251. Ralph LD, Thomson AH, Dobbs NA, et al. Maximum a posteriori Bayesian estimation of epirubicin clearance by limited sampling. Br J Clin Pharmacol 2004; 57: 764–72

    Article  PubMed  CAS  Google Scholar 

  252. Ralph LD, Sandstrom M, Twelves C, et al. Assessment of the validity of a population pharmacokinetic model for epirubicin. Br J Clin Pharmacol 2006; 62: 47–55

    Article  PubMed  CAS  Google Scholar 

  253. Wade JR, Kelman AW, Kerr DJ, et al. Variability in the pharmacokinetics of epirubicin: a population analysis. Cancer Chemother Pharmacol 1992; 29: 391–5

    Article  PubMed  CAS  Google Scholar 

  254. Hunz M, Jetter A, Warm M, et al. Plasma and tissue pharmacokinetics of epirubicin and paclitaxel in patients receiving neoadjuvant chemotherapy for locally advanced primary breast cancer. Clin Pharmacol Ther 2007; 81: 659–68

    Article  PubMed  CAS  Google Scholar 

  255. Muller HJ, Grubert M, Hilger R, et al. The influence of elevated liver function parameters on the pharmacokinetics of doxorubicin and epirubicin: a population based pharmacokinetic study of CESAR-APOH. Central European Society for Anticancer Drug Research. Working Group for Pharmacology in Oncology and Hematology. Int J Clin Pharmacol Ther 2002; 40: 575–7

    PubMed  CAS  Google Scholar 

  256. Amantea MA, Forrest A, Northfelt DW, et al. Population pharmacokinetics and pharmacodynamics of pegylated-liposomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. Clin Pharmacol Ther 1997; 61: 301–11

    Article  PubMed  CAS  Google Scholar 

  257. Launay MC, Milano G, Iliadis A, et al. A limited sampling procedure for estimating adriamycin pharmacokinetics in cancer patients. Br J Cancer 1989; 60: 89–92

    Article  PubMed  CAS  Google Scholar 

  258. Bressolle F, Ray P, Jacquet JM, et al. Bayesian estimation of doxorubicin pharmacokinetic parameters. Cancer Chemother Pharmacol 1991; 29: 53–60

    Article  PubMed  CAS  Google Scholar 

  259. Joerger M, Huitema ADR, Meenhorst PL, et al. Pharmacokinetics of low-dose doxorubicin and metabolites in patients with AIDS-related Kaposi sarcoma. Cancer Chemother Pharmacol 2005; 55: 488–96

    Article  PubMed  CAS  Google Scholar 

  260. Thomson AH, Vasey PA, Murray LS, et al. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br J Cancer 1999; 81: 99–107

    Article  PubMed  CAS  Google Scholar 

  261. Callies S, de Alwis DP, Wright JG, et al. A population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of a novel MDR modulator, zosuquidar trihydrochloride (LY335979). Cancer Chemother Pharmacol 2003; 51: 107–18

    PubMed  CAS  Google Scholar 

  262. Callies S, de Alwis DP, Mehta A, et al. Population pharmacokinetic model for daunorubicin and daunorubicinol coadministered with zosuquidar.3HCl (LY335979). Cancer Chemother Pharmacol 2004; 54: 39–48

    Article  PubMed  CAS  Google Scholar 

  263. Hempel G, Reinhardt D, Creutzig U, et al. Population pharmacokinetics of liposomal daunorubicin in children. Br J Clin Pharmacol 2003; 56: 370–7

    Article  PubMed  CAS  Google Scholar 

  264. Bos AM, Boom K, Vinks AA, et al. Development of an optimal sampling strategy for clinical pharmacokinetic studies of the novel anthracycline disaccharide analogue MEN-10755. Cancer Chemother Pharmacol 2004; 54: 64–70

    Article  PubMed  CAS  Google Scholar 

  265. Takama H, Tanaka H, Sudo T, et al. Population pharmacokinetic modeling and model validation of a spicamycin derivative, KRN5500, in phase 1 study. Cancer Chemother Pharmacol 2001; 47: 404–10

    Article  PubMed  CAS  Google Scholar 

  266. Mondick JT, Gibiansky L, Gastonguay MR, et al. Acknowledging parameter uncertainty in the simulation-based design of an actinomycin-D pharmacokinetic study in pediatric patients with Wilms’ tumor or rhabdomyosarcoma [abstract no. 938; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.pagemeeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  267. Baselga J, Llombart-Cussac A, Bellet M, et al. Randomized, double-blind, multicenter trial comparing two doses of arzoxifene (LY353381) in hormonesensitive advanced or metastatic breast cancer patients. Ann Oncol 2003; 14: 1383–90

    Article  PubMed  CAS  Google Scholar 

  268. Piotrovsky VK, Snoeck E, van Peer A. Liarozole population pharmacokinetics at the steady state [abstract no. 578; online]. Annual Meeting of the Population Approach Group in Europe; 1996 Jun 14–15; Sandwich. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  269. Piotrovsky VK, Huang ML, van Peer A, et al. Effects of demographic variables on vorozole pharmacokinetics in healthy volunteers and in breast cancer patients. Cancer Chemother Pharmacol 1998; 42: 221–8

    Article  PubMed  CAS  Google Scholar 

  270. Tornoe CW, Agerso H, Nielsen HA, et al. Population pharmacokinetic modeling of a subcutaneous depot for GnRH antagonist degarelix. Pharm Res 2004; 21: 574–84

    Article  PubMed  CAS  Google Scholar 

  271. Tornoe CW, Agerso H, Nielsen HA, et al. Pharmacokinetic/pharmacodynamic modelling of GnRH antagonist degarelix: a comparison of the non-linear mixed-effects programs NONMEM and NLME. J Pharmacokinet Pharmacodyn 2004; 31: 441–61

    Article  PubMed  CAS  Google Scholar 

  272. Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 2005; 55: 379–86

    Article  PubMed  CAS  Google Scholar 

  273. Widmer N, Decosterd LA, Csajka C, et al. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol 2006; 62: 97–112

    Article  PubMed  CAS  Google Scholar 

  274. Schmidli H, Peng B, Riviere GJ, et al. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br J Clin Pharmacol 2005; 60: 35–44

    Article  PubMed  CAS  Google Scholar 

  275. Johnson JR, Bross P, Cohen M, et al. Approval summary: imatinib mesylate capsules for treatment of adult patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Clin Cancer Res 2003; 9: 1972–9

    PubMed  CAS  Google Scholar 

  276. Delbaldo C, Chatelut E, Re M, et al. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 2006; 12: 6073–8

    Article  PubMed  CAS  Google Scholar 

  277. Li J, Karlsson MO, Brahmer J, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst 2006; 98: 1714–23

    Article  PubMed  CAS  Google Scholar 

  278. Lu JF, Eppler SM, Wolf J, et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 2006; 80: 136–45

    Article  PubMed  CAS  Google Scholar 

  279. Zandvliet AS, Schellens JHM, Copalu W, et al. A semi-physiological population pharmacokinetic model describing the non-linear disposition of indisulam. J Pharmacokinet Pharmacodyn 2006 33: 543–70

    Article  PubMed  CAS  Google Scholar 

  280. van Kesteren C, Mathôt RAA, Raymond E, et al. Development and validation of limited sampling strategies for prediction of the systemic exposure to the novel anticancer agent E7070 (N-(3-chloro-7-indolyl)-1,4-benzenedisulphonamide). Br J Clin Pharmacol 2002; 54: 463–71

    Article  PubMed  Google Scholar 

  281. Dittrich C, Zandvliet AS, Gneist M, et al. A phase I and pharmacokinetic study of indisulam in combination with carboplatin. Br J Cancer 2007; 96: 559–66

    Article  PubMed  CAS  Google Scholar 

  282. Boni JP, Leister C, Bender G, et al. Population pharmacokinetics of CCI-779: correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther 2005; 77: 76–89

    Article  PubMed  CAS  Google Scholar 

  283. Pérez-Ruixo JJ, Piotrovsky VK, Zhang S, et al. Population pharmacokinetics of tipifarnib in healthy subjects and adult cancer patients. Br J Clin Pharmacol 2006; 62: 81–96

    Article  PubMed  CAS  Google Scholar 

  284. Perez-Ruixo JJ, Zannikos P, Ozdemir V, et al. Effect of CYP2D6 genetic polymorphism on the population pharmacokinetics of tipifarnib. Cancer Chemother Pharmacol 2006; 58: 681–91

    Article  PubMed  CAS  Google Scholar 

  285. Kuester K, Kovar A, Brockhaus B, et al. Population pharmacokinetic analysis for matuzumab (EMD 72000): a humanised EGFR-targeted monoclonal antibody [abstract no. 971; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.pagemeeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  286. Lu J, Gaudreault J, Novotny W, et al. A population pharmacokinetic model for bevacizumab [abstract]. Clin Pharmacol Ther 2004; 75: P91

    Article  Google Scholar 

  287. Tanswell P, Garin-Chesa P, Rettig WJ, et al. Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. Br J Clin Pharmacol 2001; 51: 177–80

    Article  PubMed  CAS  Google Scholar 

  288. Colnot DR, Wilhelm AJ, Cloos J, et al. Evaluation of limited blood sampling in a preceding 99mTc-labeled diagnostic study to predict the pharmacokinetics and myelotoxicity of 186Re-cMAb U36 radioimmunotherapy. J Nucl Med 2001; 42: 1364–7

    PubMed  CAS  Google Scholar 

  289. Crul M, Mathôt RAA, Giaccone G, et al. Population pharmacokinetics of the novel anticancer agent KRN7000. Cancer Chemother Pharmacol 2002; 49: 287–93

    Article  PubMed  CAS  Google Scholar 

  290. Gwilt P, Tempero M, Kremer A, et al. Pharmacokinetics of levamisole in cancer patients treated with 5-fluorouracil. Cancer Chemother Pharmacol 2000; 45: 247–51

    Article  PubMed  CAS  Google Scholar 

  291. Launay MC, Iliadis A, Richard B. Population pharmacokinetics of mitoxantrone performed by a NONMEM method. J Pharm Sci 1989; 78: 877–80

    Article  PubMed  CAS  Google Scholar 

  292. Petersen KB, Jusko WJ, Rasmussen M, et al. Population pharmacokinetics of prednisolone in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2003; 51: 465–73

    PubMed  CAS  Google Scholar 

  293. Zhou H, Choi L, Lau H, et al. Population pharmacokinetics/toxicodynamics (PK/ TD) relationship of SAM486A in phase I studies in patients with advanced cancers. J Clin Pharmacol 2000; 40: 275–83

    Article  PubMed  CAS  Google Scholar 

  294. van Kesteren C, Mathôt RAA, Lopez-Lazaro L, et al. A comparison of limited sampling strategies for prediction of Ecteinascidin 743 clearance when administered as a 24-h infusion. Cancer Chemother Pharmacol 2001; 48: 459–66

    Article  PubMed  CAS  Google Scholar 

  295. van Kesteren C, Mathôt RAA, López-Lázaro L, et al. Population pharmacokinetics of the novel marine derived anti-cancer agent Ecteinascidin 743 in a phase I study using non-linear mixed effects modelling [abstract no. 121; online]. Annual Meeting of the Population Approach Group in Europe; 2000 Jun 15–16; Salamanca. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  296. Bonate PL, Floret S, Bentzen C. Population pharmacokinetics of APOMINE: a meta-analysis in cancer patients and healthy males. Br J Clin Pharmacol 2004; 58: 142–55

    Article  PubMed  Google Scholar 

  297. Scher HI, Jodrell DI, Iversen JM, et al. Use of adaptive control with feedback to individualize suramin dosing. Cancer Res 1992; 52: 64–70

    PubMed  CAS  Google Scholar 

  298. Jodrell DI, Reyno LM, Sridhara R, et al. Suramin: development of a population pharmacokinetic model and its use with intermittent short infusions to control plasma drug concentration in patients with prostate cancer. J Clin Oncol 1994; 12: 166–75

    PubMed  CAS  Google Scholar 

  299. Reyno LM, Egorin MJ, Eisenberger MA, et al. Development and validation of a pharmacokinetically based fixed dosing scheme for suramin. J Clin Oncol 1995; 13: 2187–95

    PubMed  CAS  Google Scholar 

  300. Cooper MR, Lieberman R, La Rocca RV, et al. Adaptive control with feedback strategies for suramin dosing. Clin Pharmacol Ther 1992; 52: 11–23

    Article  PubMed  CAS  Google Scholar 

  301. Piscitelli SC, Forrest A, Lush RM, et al. Pharmacometric analysis of the effect of furosemide on suramin pharmacokinetics. Pharmacotherapy 1997; 17: 431–7

    PubMed  CAS  Google Scholar 

  302. van Rijswijk RE, van Loenen AC, Wagstaff J, et al. Suramin: rapid loading and weekly maintenance regimens for cancer patients. J Clin Oncol 1992; 10: 1788–94

    PubMed  Google Scholar 

  303. Eriksson T, Hoglund P, Turesson I, et al. Pharmacokinetics of thalidomide in patients with impaired renal function and while on and off dialysis. J Pharm Pharmacol 2003; 55: 1701–6

    Article  PubMed  CAS  Google Scholar 

  304. Miles DR, Smith JA, Phan SC, et al. Population pharmacokinetics of motexafin gadolinium in adults with brain metastases or glioblastoma multiforme. J Clin Pharmacol 2005; 45: 299–312

    Article  PubMed  CAS  Google Scholar 

  305. Avramis VI, Sencer S, Periclou AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 2002; 99: 1986–94

    Article  PubMed  CAS  Google Scholar 

  306. Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet 2005; 44: 367–93

    Article  PubMed  CAS  Google Scholar 

  307. Panosyan EH, Grigoryan RS, Avramis IA, et al. Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res 2004; 24: 1121–5

    PubMed  CAS  Google Scholar 

  308. Hempel G, Lanvers-Kaminsky C, Ahlke E, et al. A population model describing the activity-time course of pegylated asparaginase in children [abstract no. 1005; online]. Annual Meeting of the Population Approach Group in Europe; 2006 Jun 14–16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?.keuze=search [Accessed 2008 May 6]

    Google Scholar 

  309. Veal GJ, Cole M, Errington J, et al. Pharmacokinetics and metabolism of 13-cisretinoic acid (isotretinoin) in children with high-risk neuroblastoma: a study of the United Kingdom Children’s Cancer Study Group. Br J Cancer 2007; 96: 424–31

    Article  PubMed  CAS  Google Scholar 

  310. Albrecht CF, Kruger PB, Smit BJ, et al. The pharmacokinetic behaviour of hypoxoside taken orally by patients with lung cancer in a phase I trial. S Afr Med J 1995; 85: 861–5

    PubMed  CAS  Google Scholar 

  311. Bellnier DA, Greco WR, Loewen GM, et al. Population pharmacokinetics of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbidea in cancer patients. Cancer Res 2003; 63: 1806–13

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthe S. Zandvliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandvliet, A.S., Schellens, J.H.M., Beijnen, J.H. et al. Population Pharmacokinetics and Pharmacodynamics for Treatment Optimization in Clinical Oncology. Clin Pharmacokinet 47, 487–513 (2008). https://doi.org/10.2165/00003088-200847080-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200847080-00001

Keywords

Navigation