Skip to main content

Advertisement

Log in

Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Flax (Linum usitatissimum L.) is the third largest natural fiber crop in the world. The flax genome shows environmentally induced heritable genomic changes. The activation of transposable elements has been proposed and identified as the mechanism behind this genotypic plasticity. Transposable elements, particularly the retrotransposons, generates genomic diversity by replication which makes them an excellent source of molecular markers. Inter-retrotransposon amplified polymorphism (IRAP) and the retrotransposon-microsatellite amplified polymorphism (REMAP) markers were used to assess the insertional polymorphism of LTR retrotransposons and genetic diversity in 80 genotypes of L. usitatissimum collected from Iran. A total of 77 and 133 loci were amplified using 7 IRAP and 13 REMAP primers, respectively. Percentage of polymorphic loci (PPL) for IRAP and REMAP markers were 53.25% and 58.92%, respectively. Average of expected heterozygosity (He), number of effective alleles (Ne) and Shannon’s information index (I) for IRAP markers were slightly more than those of REMAP markers. A high level of intra-population genetic differentiation was found, which is supported by a moderate level of gene flow among populations. A model-based Bayesian approach and cluster analysis using Minimum Evolution (ME) algorithm distinguished genotypes collected from Alborz region from those collected from Zagros region. Mantel test between genetic and geographical distances of populations revealed low but significant correlation coefficient (r = 0.36, P ≤ 0.05). The results demonstrated that molecular markers developed based on active LTR retrotransposons in flax could be used as relatively reliable tools to analysis population structure in L. usitatissimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTR:

long terminal repeat

REMAP:

retrotransposon-microsatellite amplified polymorphism

SSR:

simple sequence repeat

References

  • Abdollahi Mandoulakani B., Piri Y., Darvishzadeh R., Bernoosi I. & Jafari M. 2012. Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Mol. Biol. Rep. 30: 286–296.

    Article  CAS  Google Scholar 

  • Abdollahi Mandoulakani B., Rahmanpour S., Shaaf S., Gho-lamzadeh Khoei S., Rastgou M. & Rafezi R. 2015a. Towards the identification of retrotransposon-based and ISSR molecular markers associated with populations resistant to ZYMV in melon. S. Afr. J. Bot. 100: 141–147.

    Article  CAS  Google Scholar 

  • Abdollahi Mandoulakani B., Sadigh P., Azizi H., Piri Y., Nasri Sh. & Arzhangh S. 2015b. Comparative assessment of IRAP, REMAP, ISSR, and SSR markers for evalution of genetic diversity of alfalfa (Medicago sativa L.). J. Agr. Sci. Tech. 17: 999–1010.

    Google Scholar 

  • Abdollahi Mandoulakani B., Yaniv E., Kalendar R., Raats D., Bariana H.S., Bihamta M.R. & Schulman A.H. 2015c. Development of IRAP- and REMAP- derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theor. Appl. Genet. 128: 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K., Albright L.M., Coen D.M. & Varki A. 1995. Current Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  • Barnes D.K., Culbertson J.O. & Lambert J.W. 1960. Inheritance of seed and flower colors in flax. Agron. J. 52: 456–459.

    Article  Google Scholar 

  • Biswas M.K., Xu Q. & Deng X. 2010. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci. Hortic. 124: 254–261.

    Article  CAS  Google Scholar 

  • Branco C.J.S., Vieira E.A., Malone G., Kopp M.M., Malone E., Bernardes A., Mistura C.C., Carvalho F.I.F. & Oliveira C.A. 2007. IRAP and REMAP assessments of genetic similarity in rice. J. Appl. Genet. 2: 107–113.

    Article  Google Scholar 

  • Chen Y., Schneeberger R.G. & Cullis C.A. 2005. A site-specific insertion sequence in flax genotrophs induced by environment. New Phytol. 167: 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y., Lowenfeld R. & Cullis C.A. 2009. An environmentally induced adaptive (?) insertion event in flax. Int. J. Genet. Mol. Biol. 3: 038–047.

    Google Scholar 

  • Cloutier S., Ragupathy R. & Niu Z. 2011. SSR-based linkage map of flax (Linum usitassimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol. Breeding. 28: 437–451.

    Article  CAS  Google Scholar 

  • Cullis C.A. 2005. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. 95: 201–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederichsen A. & Fu Y.B. 2006. Phenotypic and molecular (RAPD) differentiation of four infraspecific groups of cultivated flax (Linum usitatissimum L. subsp. usitatissimum). Genet. Resour. Crop Evol. 53: 77–90.

    Article  CAS  Google Scholar 

  • Diederichsen A. & Hammer K. 1995. Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.). Genet. Resour. Crop Evol. 42: 26–272.

    Article  Google Scholar 

  • Evanno G., Regnaut S. & Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Evans G.M., Durrant A. & Rees H. 1966. Associated nuclear changes in the induction of flax genotrophs. Nature. 212: 697–699.

    Article  Google Scholar 

  • Everaert I., de Riek J., de Loose M., van Waes J. & van Bock-staele E. 2001. Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Var. Seeds. 14: 69–87.

    Google Scholar 

  • Fu Y.B. 2006. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet. Resour. 4: 117–124.

    Article  Google Scholar 

  • Fu Y.B., Diederichsen A., Richards K.W. & Peterson G. 2002. Genetic diversity within a range of cultivars and landraces of flax (Linum usitatissimum L.) as revealed by RAPDs. Genet. Resour. Crop Evol. 49: 167–174.

    Article  Google Scholar 

  • Gholamzadeh Khoei S., Abdollahi Mandoulakani B. & Bernousi I. 2015. Genetic diversity in Iranian melon populations hybrids assessed by IRAP and REMAP markers. J. Agr. Sci. Tech. 17: 1267–1277.

    Google Scholar 

  • Gill K.S. 1987. Linseed. Publications and Information Division. Indian Council of Agricultural Research, New Delhi, India.

    Google Scholar 

  • Gorman N.B., Cullis C.A. & Aldridge N. 1993. Genetic and linkage analysis of isozyme polymorphism in flax. J. Hered. 84: 7–78.

    Article  Google Scholar 

  • Haggans C.J., Hutchins A.M., Olson B.A., Thomas W., Martini M.C. & Slavin J.L. 1999. Effect of flaxseed consumption on urinary estrogen metabolites in postmenopausal women. Nutr. Cancer. 33: 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Hilakivi-Clarke L., Clarke R. & Lippman M. 1999. The influence of maternal diet on breast cancer risk among female offspring. Nutrition. 15: 392–401.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova S., Rashevskaya T. & Makhonina M. 2011. Flaxseed additive application in dairy products production. Procedia Food Sci. 1: 275–280.

    Article  CAS  Google Scholar 

  • Kalendar R., Grab T., Regina M., Souniemi A. & Schulman A.H. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98: 704–711.

    Article  CAS  Google Scholar 

  • Kalendar R., Tanskanen J., Immonen S., Nevo E. & Schulman A.H. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA. 97: 660–6607.

    Article  Google Scholar 

  • Laurentin H. 2009. Data analysis for molecular characterization of plant genetic resources. Genet. Resour. Crop Evol. 56: 277–292.

    Article  CAS  Google Scholar 

  • Lowe A., Harris S. & Ashton P. 2004. Ecological Genetics: Design, Analysis and Application. Blackwell Science Ltd, Oxford, (UK), 32. pp.

    Google Scholar 

  • Melnikova N.V., Kudryavtseva A.V., Zelenin A.V., Lakunina V.A., Yurkevich O.Y., Speranskaya A.N., Dmitriev A.A., Krinitsina A.A., Belenikim M.S., Uroshlev L.A., Snezhkina A.V., Sadritdinova A.F., Koroban N.V., Amosova A.V., Samatadze T.E., Guzenko E.V., Lemesh V.A., Savilova A.M., Rachinskaia O.A., Kishlyan N.V., Rozhmina T.A., Bolsheva N.L. & Muravenko O.V. 2014. Retrotransposon-based molecular markers for analysis of genetic diversity within the genus Linum. BioMed Res. Int. 231589.

    Google Scholar 

  • Muravenko O.V., Lemesh V.A., Samatadze T.E., Amosova A.V., Grushetskaya Z.E., Popov K.V., Semenova O.Y.U., Kho-tyuleva L.V. & Zelenin A.V. 2003. Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russ. J. Genet. 39: 414–421.

    Article  CAS  Google Scholar 

  • Murre M. 1955. Vezelvlas. Uitgeverij Ceres, Meppel, The Netherlands: 11. pp.

    Google Scholar 

  • Nasri S.H., Abdollahi Mandoulakani B., Darvishzadeh R. & Bernoosi I. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem. Genet. 51: 927–943.

    Article  CAS  PubMed  Google Scholar 

  • Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitors T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., Bharti A.K., Chapman J., Alex Feltus F., Gowik U., Grigoriev I.V., Lyons E., Maher C.A., Martis M., Narechania A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L., Carpita N.C., Freeling M., Gingle A.R., Hash C.T., Keller B., Klein P., Kresovich S., McCann M.C., Ming R., Peterson D.G., Rahman M., Ware D., Westhoff P., Mayer K.F.X., Messing J. & Rokhsar D.S. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556.

    Article  CAS  PubMed  Google Scholar 

  • Peakall R. & Smouse P.E. 2006. GenAlEx 6. genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6: 288–295.

    Google Scholar 

  • Pritchard J.K., Stephens M. & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao N. 2004. Plant genetic resources: Advancing conservation and use through biotechnology. Afr. J. Biotechnol. 3: 136–145.

    Google Scholar 

  • Rechinger K.H. 1974. Linaceae. In: Rechinger KH (ed.) Flora Iranica. vol, 106. Graz: Akademische Druck-und Verlagsansatalt.

  • Rohlf F.J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, New York.

    Google Scholar 

  • Sharifinia F. & Assadi M. 2001. Flora of Iran, No. 34. Linaceae. Research Inst, Forests and Rangelands, Ministry of Jahad-e-Sazandegi, Iran (In Persian).

    Google Scholar 

  • Shimamura M., Yasue H., Ohshima K., Abe H., Kato H., Kishiro T., Goto M., Munechika I. & Okada N. 1997. Molecular evidence from retroposons that whales form a clade within eventoed ungulates. Nature 388: 666–670.

    Article  CAS  PubMed  Google Scholar 

  • Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchell S.E., Kresovich S. & Ziegle J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.) comparisons with data from RFLPS and pedigree. Theor. Appl. Genet. 95: 16–173.

    Article  Google Scholar 

  • Smykal P. 2006. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J. Appl. Genet. 47: 221–230.

    Article  PubMed  Google Scholar 

  • Smykal P., Hybl M., Corander J., Jarkovsky J., Flavell A.J. & Griga M. 2008. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor. Appl. Genet. 117: 41–424.

    Article  CAS  Google Scholar 

  • Smykal P., Bacova-Kerteszova N., Kalendar R., Corander J., Schlman A.H. & Pavelek M. 2011. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet. 122: 1385–1397.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S.D. & McCouch S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Sci. 277: 106–1066.

    Google Scholar 

  • Uysal H., Fu Y.B., Kurt O., Peterson G.W., Diederichsen A. & Kusters P. 2010. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet. Resour. Crop Evol. 57: 1109–1119.

    Article  CAS  Google Scholar 

  • Vavilov N.I. 1926. Studies on the origin of cultivated plants. Leningrad, Russia: Institute of Applied Botany and Plant Breeding (Leningrad).

    Google Scholar 

  • Vicient C.M., Kalendar R., Anamthawat-Jonsson K., Suoniemi A. & Schulman A.H. 1999. Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica. 107: 5–63.

    Article  Google Scholar 

  • Vromans J. 2006. Molecular genetic studies in flax (Linum usitatissimum L.). PhD Thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Waugh R., McLean K., Flavell A.J., Pearce S.R., Kumar A., Thomas B.B.T. & Powell W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequences-specific amplification polymorphisms (S-SAP). Mol. Genet. Gen. 253: 687–694.

    Article  CAS  Google Scholar 

  • Wiesnerova D. & Wiesner I. 2004. ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol. Biotechnol. 26: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Zohary D. & Hopf M. 2000. Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 3th ed. Oxford University Press, Oxford.

    Google Scholar 

  • Zou J., Gong H., Yang T.-J. & Meng J. 2009. Retrotransposons-a major driving force in plant genome evolution and a useful tool for genome analysis. J. Crop Sci. Biotech. 12: 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute of Biotechnology of the Urmia University (Urmia, Iran) for hosting the lab facilities. Dr A. Hassanzadeh Gorttapeh (Agricultural and Natural Research Center of West Azarbayjan, Urmia, Iran) appreciates for providing the seeds of flax populations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Abdollahi Mandoulakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Holasou, H., Abdollahi Mandoulakani, B., Jafari, M. et al. Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran. Biologia 71, 305–315 (2016). https://doi.org/10.1515/biolog-2016-0042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0042

Key words

Navigation