Skip to main content
Log in

The influence of particular chromosome regions of Triticum timopheevii on the formation of resistance to diseases and quantitative traits in common wheat

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Evaluation of the influence of Triticum timopheevii Zhuk. introgression fragments (2n = 28, AtAtGG) and their combinations on resistance to leaf and stem rust, powdery mildew, and a number of quantitative traits in 15 introgressive lines of common wheat was conducted. Analysis of introgressive lines by molecular genetic and cytological methods showed the efficiency of using a complex of different types of markers for detailed characterization of hybrid forms and detection of different translocations and substitutions. Evaluation of lines according to their resistance to fungal diseases showed that lines that contain an introgressive fragment of the 5G chromosome in their genome are completely resistant to populations of leaf rust in Western Siberia and the stem rust that is typical for Omsk oblast. Lines 3862-5 and 3862-15, which contain a fragment of the long arm of the 2G chromosome in their genome, were resistant to the population of stem rust in Western Siberia. Introgressive lines were studied for a number of quantitative traits. No negative influence of alien material on the yield and other quantitative traits was observed in all studied lines, which allows one to use them in breeding as donors of resistance to fungal diseases. In addition, the positive influence of T. timopheevii 2G chromosome fragments on the number of grains in an ear was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badaeva, E.D., Budashkina, E.B., Badaev, N.S., et al., General Features of Chromosome Substitutions in Triticum aestivum × T. timopheevii Hybrids, Theor. Appl. Genet., 1991, vol. 82, pp. 227–232.

    Article  Google Scholar 

  • Badaeva, E.D., Badaev, N.S., Gill, B.S., et al., Intraspecific Karyotype Divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, pp. 117–145.

    Article  Google Scholar 

  • Bariana, H.S., Hayden, M.J., Ahmed, N.U., et al., Mapping of Durable Adult Plant and Seedling Resistances to Stripe Rust and Stem Rust Diseases in Wheat, Aust. J. Agric. Res., 2001, vol. 52, pp. 1247–1255.

    Article  CAS  Google Scholar 

  • Bedbrook, J.R., Jones, J., O’Dell, M., et al., A Molecular Description of Telomeric Heterochromatin in Secale Species, Cell, 1980, vol. 19, pp. 545–560.

    Article  PubMed  CAS  Google Scholar 

  • Brevis, J.C., Chicaiza, O., Khan, I.A., et al., Agronomic and Quality Evaluation of Common Wheat Near-Isogenic Lines Carrying the Leaf Rust Resistance Gene Lr47, Crop Sci., 2008, vol. 48, pp. 1441–1451.

    Article  Google Scholar 

  • Brown, J.K.M., Yield Penalties of Disease Resistance in Crops, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Budashkina, E.B. and Kalinina, N.P., Development and Genetic Analysis of Common Wheat Introgressive Lines Resistant to Leaf Rust, Acta Phytopathol. Entomol., 2001, vol. 36, pp. 61–65.

    Article  Google Scholar 

  • Dyck, P.L. and Friebe, B., Evaluation of Leaf Rust Resistance from Wheat Chromosomal Translocation Lines, Crop Sci., 1993, vol. 33, pp. 687–690.

    Article  Google Scholar 

  • Egorova, E., Leonova, I., Budashkina, E., et al., Application of Marker Assisted Selection for Transferring Resistance Genes from Triticum timopheevii to Bread Wheat, in Proc. of the 20th Intern. Conf. on ITMI/2ndWGCJoint Workshop, September 1–5, 2010, Beijing, China, 2010, p. 78.

  • Friebe, B., Yiang, J., Raupp, W.J., et al., Characterization of Wheat-Alien Translocations Conferring Resistance to Diseases and Pests: Current Status, Euphytica, 1996, vol. 91, pp. 59–87.

    Article  Google Scholar 

  • Ganal, M.W. and Röder, M.S., Microsatellite and SNP Markers in Wheat Breeding, in Genomics-Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., New York: Springer, 2007, p. 124.

    Google Scholar 

  • Hayden, M., Good, G., and Sharp, P.J., Sequence Tagged Microsatellite Profiling (STMP): Improved Isolation of DNA Sequence Flanking Target SSRs, Nucleic Acids Res., 2002, vol. 30, pp. 129–133.

    Article  Google Scholar 

  • Jarve, K., Peusha, H.O., Tsymbalova, J., et al., Chromosomal Location of a Triticum timopheevii-Derived Powdery Mildew Resistance Gene Transferred to Common Wheat, Genome, 2000, vol. 43, pp. 377–381.

    PubMed  CAS  Google Scholar 

  • Ji, J.H., Qin, B., Wang, H.Y., et al., STS Markers for Powdery Mildew Resistance Gene Pm6 in Wheat, Euphytica, 2008, vol. 163, pp. 159–165.

    Article  CAS  Google Scholar 

  • Jiang, J. and Gill, B.S., Sequential Chromosome Banding and in situ Hybridization Analysis, Genome, 1993, vol. 36, pp. 792–795.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. and Gill, B.S., Different Species-Specific Chromosome Translocations in Triticum timopheevii and T. turgidum Support the Diphyletic Origin of Polyploidy Wheats, Chrom. Res., 1994, vol. 2, pp. 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y. and Singh, R.P., Resistance in US Wheat to Recent Eastern African Isolates of Puccinia graminis f. sp. tritici with Virulence to Resistance Gene Sr31, Plant Dis., 2006, vol. 90, pp. 476–480.

    Article  CAS  Google Scholar 

  • Jin, Y. and Szabo, L.J., Detection of Virulence to Resistance Gene Sr36 within the TTKS Race Lineage of Puccinia graminis f. sp. tritici, Plant Dis., 2009, vol. 93, no. 4, pp. 367–370.

    Article  CAS  Google Scholar 

  • Jorgensen, J.H. and Jensen, C.J., Gene Pm6 for Resistance to Powdery Mildew in Wheat, Euphytica, 1973, vol. 22, pp. 4–23.

    Google Scholar 

  • Kjær, B., Jensen, H.P., Jensen, J., et al., Associations between Three Mlo Powdery Mildew Resistance Genes and Agronomic Traits in Barley, Euphytica, 1990, vol. 46, pp. 185–193.

    Article  Google Scholar 

  • Knott, D.R., Translocations Involving Triticum Chromosomes and Agropyron Chromosomes Carrying Leaf Rust Resistance, Can. J. Genet. Cytol., 1968, vol. 10, pp. 695–696.

    Google Scholar 

  • Kumlay, A.M., Baenziger, P.S., Gill, K.S., et al., Understanding the Effect of Rye Chromatin in Bread Wheat, Crop Sci., 2003, vol. 43, no. 5, pp. 1643–1651.

    Article  Google Scholar 

  • Labuschagne, M.T., Pretorius, Z.A., and Grobbelaar, B., The Influence of Leaf Rust Resistance Genes Lr29, Lr34, Lr35 and Lr37 on Bread-Making Quality in Wheat, Euphytica, 2002, vol. 124, pp. 65–70.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Roder, M.S., Budashkina, E.B., et al., Molecular Analysis of Leaf-Rust-Resistant Introgression Lines Obtained by Crossing of Hexaploid Wheat Triticum aestivum with Tetraploid Wheat Triticum timopheevii, Russ. J. Genet., 2002, vol. 38, no. 12, pp. 1397–1403.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Roder, M.S., Kalinina, N.P., et al., Genetic Analysis and Localization of Loci Controlling Leaf Rust Resistance of Triticum aestivum × Triticum timopheevii Introgression Lines, Russ. J. Genet., 2008, vol. 44, no. 12, pp. 1431–1437.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Budashkina, E.B., Flath, K., et al., Microsatellite Mapping of a Leaf Rust Resistance Gene Transferred to Common Wheat from Triticum timopheevii, Cereal Res. Commun., 2010, vol. 38, pp. 212–219.

    Article  Google Scholar 

  • Liu, Y., Liu, D., Zhang, H., et al., Allelic Variation, Sequence Determination and Microsatellite Screening at the XGWM261 Locus in Chinese Hexaploid Wheat (Triticum aestivum) Varieties, Euphytica, 2005, vol. 145, pp. 103–112.

    Article  CAS  Google Scholar 

  • Maghirang, E.B., Lookhart, G.L., Bean, S.R., et al., Comparison of Quality Characteristics and Bread-Making Functionality of Hard Red Winter and Hard Red Spring Wheat, Cereal Chem., 2006, vol. 83, pp. 520–528.

    Article  CAS  Google Scholar 

  • Mains, E.B. and Jackson, H.S., Physiological Specialization in the Leaf Rust of Wheat, Puccinia triticina Erikss., Phytopathology, 1926, vol. 16, pp. 89–120.

    Google Scholar 

  • Maxwell, J.J., Lyerly, J.H., Cowger, C., et al., MlAG12: A Triticum timopheevii Derived Powdery Mildew Resistance Gene in Common Wheat on Chromosome 7AL, Theor. Appl. Genet., 2009, vol. 119, pp. 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, 2008. http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • McIntosh, R.A., Wellings, C.R., and Park, R.F., Wheat Rusts: An Atlas of Resistance Genes, Collingwood, Australia: CSIRO Publ., 1995.

    Google Scholar 

  • Mebrate, S.A., Oerke, E.C., Dehne, H.W., et al., Mapping of the Leaf Rust Resistance Gene Lr38on Wheat Chromosome Arm 6DL using SSR Markers, Euphytica, 2008, vol. 162, pp. 457–466.

    Article  CAS  Google Scholar 

  • Ortelli, S., Winzeler, H., Winzeler, M., et al., Leaf Rust Resistance Gene Lr9 and Winter Wheat Yield Reduction: I. Yield and Yield Components, Crop Sci., 1996, vol. 36, pp. 1590–1595.

    Article  Google Scholar 

  • Perugini, L.D., Murphy, J.P., Marshall, D., et al., Pm37, a New Broadly Effective Powdery Mildew Resistance Gene from Triticum timopheevii, Theor. Appl. Genet., 2008, vol. 116, pp. 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R.F., Campbell, A.B., and Hannah, A.E., A Diagrammatic Scale for Estimating Rust Intensity on Leaves and Stems of Cereals, Can. J. Res. (Section C), 1948, vol. 26, pp. 496–500.

    Article  Google Scholar 

  • Plaschke, J. and Ganal, M.W., Detection of Genetic Diversity in Closely Related Bread Wheat Using Microsatellite Markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007.

    Article  CAS  Google Scholar 

  • Qi, L., Friebe, B., Zhang, P., et al., Homoeologous Recombination, Chromosome Engineering and Crop Improvement, Chromosome Res., 2007, vol. 15, pp. 3–19.

    Article  PubMed  CAS  Google Scholar 

  • Roelfs, A.P., Singh, R.P., and Saari, E.E., Rust Diseases of Wheat: Concepts and Methods of Disease Management, Mexico: CIMMYT, 1992, p. 45.

    Google Scholar 

  • Saari, E.E. and Prescott, J.M., A Scale for Appraising the Foliar Intensity of Wheat Diseases, Plant Dis. Rep., 1975, vol. 59, pp. 377–380.

    Google Scholar 

  • Salina, E.A., Egorova, E.M., Adonina, I.G., et al., DNA Markers for Genotyping the Common Wheat (Triticum aestivum L.) Lines with the Genetic Material of Aegilops speltoides Tausch and Triticum timopheevii Zhuk., Inform. Vestnik VOGiS, 2008, vol. 12, no. 4, pp. 620–628.

    Google Scholar 

  • Salina, E.A., Leonova, I.N., Efremova, T.T., et al., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006a, vol. 6, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Salina, E.A., Lim, K.Y., Badaeva, E.D., et al., Phylogenetic Reconstruction of Aegilops Section sitopsis and the Evolution of Tandem Repeats in the Diploids and Derived Wheat Polyploids, Genome, 2006b, vol. 49, pp. 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R.P., Huerta-Espino, J., Rajaram, S., et al., Agronomic Effects from Chromosome Translocations 7DL.7Ag and 1BL.1RS in Spring Wheat, Crop Sci., 1998, vol. 38, pp. 27–33.

    Article  Google Scholar 

  • Sourdille, P., Singh, S., Cadalen, T., et al., Microsatellite-Based Deletion Bin System for the Establishment of Genetic-Physical Map Relationships in Wheat (Triticum aestivum L.), Funct. Integr. Genomics, 2004, vol. 4, pp. 12–25.

    Article  PubMed  CAS  Google Scholar 

  • Tao, W., Liu, D., Liu, J., et al., Genetic Mapping of the Powdery Mildew Resistance Gene Pm6 in Wheat by RFLP Analysis, Theor. Appl. Genet., 2000, vol. 100, pp. 564–556.

    Article  CAS  Google Scholar 

  • Tsilo, T.J., Jin, Y., and Anderson, J.A., Diagnostic Microsatellite Markers for the Detection of Stem Rust Resistance Gene Sr36 in Diverse Genetic Backgrounds of Wheat, Crop Sci., 2008, vol. 48, pp. 253–261.

    Article  CAS  Google Scholar 

  • Uhrin, A., Láng, L., and Bed, Z., Comparison of PCR-Based DNA Markers for Using Different Lr19 and Lr24 Leaf Rust Resistance Wheat Sources, Cereal Res. Commun., 2008, vol. 36, no. 4, pp. 533–541.

    Article  CAS  Google Scholar 

  • Yamamori, M., An N-Band Marker for Gene Lr18 for Resistance to Leaf Rust in Wheat, Theor. Appl. Genet., 1994, vol. 89, pp. 643–646.

    CAS  Google Scholar 

  • Zeven, A.C., Knott, D.R., and Johnson, R., Investigation of Linkage Drag in Near Isogenic Lines of Wheat by Testing for Seedling Reaction to Races of Stem Rust, Leaf Rust and Yellow Rust, Euphytica, 1983, vol. 32, pp. 319–327.

    Article  Google Scholar 

  • Zhang, L.Y., Bernard, M., Leroy, P., et al., High Transferability of Bread Wheat EST-Derived SSRs to Other Cereals, Theor. Appl. Genet., 2005, vol. 111, pp. 677–687.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Timonova.

Additional information

Original Russian Text © E.M. Timonova, I.N. Leonova, I.A. Belan, L.P. Rosseeva, E.A. Salina, 2012, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2012, Vol. 16, No. 1, pp. 142–159.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timonova, E.M., Leonova, I.N., Belan, I.A. et al. The influence of particular chromosome regions of Triticum timopheevii on the formation of resistance to diseases and quantitative traits in common wheat. Russ J Genet Appl Res 2, 330–343 (2012). https://doi.org/10.1134/S2079059712040119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059712040119

Keywords

Navigation